89 research outputs found
Sperm selection by rheotaxis improves sperm quality and early embryo development
peer-reviewedThe objective of this work was to elucidate whether a sperm selection method that combines rheotaxis and microfluidics can improve the selection of spermatozoa over density gradient and swim-up. For this purpose human sperm selected by rheotaxis were compared against density gradient, swim-up and a control group of non-selected spermatozoa in split frozen-thawed (FT) and fresh (F) semen samples. Sperm quality was assessed in terms of motility, morphology, DNA fragmentation index (DFI), viability, acrosome integrity and membrane fluidity. Using a mouse model, we compared fertilisation and embryo development rates after performing ICSI with spermatozoa, sorted using rheotaxis or swim-up. Selection by rheotaxis yielded a sperm population with reduced DFI than the control (P < 0.05), improved normal morphology (P < 0.001) and higher total motility (TM; P < 0.001) than the other techniques studied in F and FT samples. Swim-up increased TM compared to density gradient and control in FT or F samples (P < 0.001), and yielded lower DFI than the control with F samples (P < 0.05). In FT samples, selection by rheotaxis yielded sperm with higher viability than control, density gradient and swim-up (P < 0.01) while acrosomal integrity and membrane fluidity were maintained. When mouse spermatozoa were selected for ICSI using rheotaxis compared to swim-up, there was an increase in fertilisation (P < 0.01), implantation (P < 0.001) and foetal development rates (P < 0.05). These results suggest that, in the absence of non-destructive DNA testing, the positive rheotaxis can be used to select a population of low DNA fragmentation spermatozoa with high motility, morphology and viability, leading to improved embryo developmental rates
Picturing words? Sensorimotor cortex activation for printed words in child and adult readers
Learning to read involves associating abstract visual shapes with familiar meanings. Embodiment theories suggest that word meaning is at least partially represented in distributed sensorimotor networks in the brain (Barsalou, 2008; Pulvermueller, 2013). We explored how reading comprehension develops by tracking when and how printed words start activating these “semantic” sensorimotor representations as children learn to read. Adults and children aged 7–10 years showed clear category-specific cortical specialization for tool versus animal pictures during a one-back categorisation task. Thus, sensorimotor representations for these categories were in place at all ages. However, co-activation of these same brain regions by the visual objects’ written names was only present in adults, even though all children could read and comprehend all presented words, showed adult-like task performance, and older children were proficient readers. It thus takes years of training and expert reading skill before spontaneous processing of printed words’ sensorimotor meanings develops in childhood
Task switching costs in preschool children and adults
Past research investigating cognitive flexibility has shown that preschool children make many
perseverative errors in tasks that require switching between different sets of rules. However,
this inflexibility may not necessary hold with easier tasks. The current study investigates the
developmental differences in cognitive flexibility using a task-switching procedure that
compares reaction times and accuracy in 4- to 6-year-olds to those of adults. The experiment
involved simple target detection tasks, and was intentionally designed in a way that the
stimulus and response conflicts were minimal, together with a long preparation window.
Global mixing costs (performance costs when multiple tasks are relevant in a context), and
local switch costs (performance costs due to switching to an alternative task) are typically
thought to engage endogenous control processes. If this is the case, we should observe
developmental differences with both these costs. Our results show, however, that when the
accuracy was good, there were no age differences in cognitive flexibility between children
and adults (i.e. the ability to manage multiple tasks and to switch between tasks). Even
though preschool children had slower reaction times and were less accurate, the mixing and
switch costs associated with task-switching were not reliably larger for preschool children.
Preschool children did, however, show more commission errors and greater response
repetition effects than adults, which may reflect differences in inhibitory control
Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO
Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning
Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats
In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/root Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 x 10(-25). At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 x 10(-24). At 55 Hz we can exclude sources with ellipticities greater than 10(-5) within 100 pc of Earth with fiducial value of the principal moment of inertia of 10(38) kg m(2)
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass
100 M ⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than
0.93 Gpc−3yr−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits
Recommended from our members
Africa Insight
Africa Insight is an independent publication which endeavours to promote insight into the process of change and development in Africa.This journal focuses on contemporary issues of Afric
Recommended from our members
Africa Insight
Africa Insight is an independent publication which endeavours to promote insight into the process of change and development in Africa.This journal focuses on contemporary issues of Afric
- …