35 research outputs found
Sensitivity of an image plate system in the XUV (60 eV < E < 900 eV)
Phosphor imaging plates (IPs) have been calibrated and proven useful for
quantitative x-ray imaging in the 1 to over 1000 keV energy range. In this
paper we report on calibration measurements made at XUV energies in the 60 to
900 eV energy range using beamline 6.3.2 at the Advanced Light Source at
Lawrence Berkeley National Laboratory. We measured a sensitivity of ~25 plus or
minus 15 counts/pJ over the stated energy range which is compatible with the
sensitivity of Si photodiodes that are used for time-resolved measurements. Our
measurements at 900 eV are consistent with the measurements made by Meadowcroft
et al. at ~1 keV.Comment: 7 pages, 2 figure
Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser
Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented
Recommended from our members
Developing solid state experiments on the Nova laser
An x-ray drive has been developed to shock compress metal foils in the solid state using an internally shielded hohlraum with a high contrast shaped pulse from the Nova laser. The drive has been characterized and hydrodynamics experiments designed to study growth of the Rayleigh-Taylor (RT) instability in Cu foils at 3 Mbar peak pressures in the plastic flow regime have been started. Pre-imposed modulations with an initial wavelength of 20-50 {micro}m, and amplitudes of 1.0-2.5 {micro}m show growth consistent with simulations. In the Nova experiments, the fluid and solid states are expected to behave similarly for Cu. An analytic stability analysis is used to motivate an experimental design with an Al foil where the effects of material strength on the RT growth are significantly enhanced. The conditions reached in the metal foils at peak compression are similar to those predicted at the core of the earth
GUCY2C Opposes Systemic Genotoxic Tumorigenesis by Regulating AKT-Dependent Intestinal Barrier Integrity
The barrier separating mucosal and systemic compartments comprises epithelial cells, annealed by tight junctions, limiting permeability. GUCY2C recently emerged as an intestinal tumor suppressor coordinating AKT1-dependent crypt-villus homeostasis. Here, the contribution of GUCY2C to barrier integrity opposing colitis and systemic tumorigenesis is defined. Mice deficient in GUCY2C (Gucy2cβ/β) exhibited barrier hyperpermeability associated with reduced junctional proteins. Conversely, activation of GUCY2C in mice reduced barrier permeability associated with increased junctional proteins. Further, silencing GUCY2C exacerbated, while activation reduced, chemical barrier disruption and colitis. Moreover, eliminating GUCY2C amplified, while activation reduced, systemic oxidative DNA damage. This genotoxicity was associated with increased spontaneous and carcinogen-induced systemic tumorigenesis in Gucy2cβ/β mice. GUCY2C regulated barrier integrity by repressing AKT1, associated with increased junction proteins occludin and claudin 4 in mice and Caco2 cells in vitro. Thus, GUCY2C defends the intestinal barrier, opposing colitis and systemic genotoxicity and tumorigenesis. The therapeutic potential of this observation is underscored by the emerging clinical development of oral GUCY2C ligands, which can be used for chemoprophylaxis in inflammatory bowel disease and cancer
Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation
Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (nβ=β5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks
Recommended from our members
Laboratory studies of radionuclide transport in fractured Climax granite
This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, {sup 85}Sr and /sup 95m/Tc showed little or no retardation, whereas {sup 137}Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less {sup 137}Cs than most natural fractures. Estimated fracture apertures from 18 to 60 {mu}m and hydraulic conductivities from 1.7 to 26 x 10{sup -3} m/s were calculated from the core measurements
Recommended from our members
Engineering test plan for field radionuclide migration experiments in climax granite
This Engineering Test Plan (ETP) describes field studies of radionuclide migration in fractured rock designed for the Climax grainite at the Nevada Test Site. The purpose of the ETP is to provide a detailed written document of the method of accomplishing these studies. The ETP contains the experimental test plans, an instrumentation plan, system schematics, a description of the test facility, and a brief outline of the laboratory support studies needed to understand the chemistry of the rock/water/radionuclide interactions. Results of our initial hydrologic investigations are presented along with pretest predictions based on the hydrologic test results