7 research outputs found

    Sustainable Smartphone-Based Healthcare Systems: A Systems Engineering Approach to Assess the Efficacy of Respiratory Monitoring Apps

    Get PDF
    Recent technological developments along with advances in smart healthcare have been rapidly changing the healthcare industry and improving outcomes for patients. To ensure reliable smartphone-based healthcare interfaces with high levels of efficacy, a system dynamics model with sustainability indicators is proposed. The focus of this paper is smartphone-based breathing monitoring systems that could possibly use breathing sounds as the data acquisition input. This can especially be useful for the self-testing procedure of the ongoing global COVID-19 crisis in which the lungs are attacked and breathing is affected. The method of investigation is based on a systems engineering approach using system dynamics modeling. In this paper, first, a causal model for a smartphone-based respiratory function monitoring is introduced. Then, a systems thinking approach is applied to propose a system dynamics model of the smartphone-based respiratory function monitoring system. The system dynamics model investigates the level of efficacy and sustainability of the system by studying the behavior of various factors of the system including patient wellbeing and care, cost, convenience, user friendliness, in addition to other embedded software and hardware breathing monitoring system design and performance metrics (e.g., accuracy, real-time response, etc.). The sustainability level is also studied through introducing various indicators that directly relate to the three pillars of sustainability. Various scenarios have been applied and tested on the proposed model. The results depict the dynamics of the model for the efficacy and sustainability of smartphone-based breathing monitoring systems. The proposed ideas provide a clear insight to envision sustainable and effective smartphone-based healthcare monitoring systems.https://doi.org/10.3390/su1212506

    Sustainable Smartphone-Based Healthcare Systems: A Systems Engineering Approach to Assess the Efficacy of Respiratory Monitoring Apps

    No full text
    Recent technological developments along with advances in smart healthcare have been rapidly changing the healthcare industry and improving outcomes for patients. To ensure reliable smartphone-based healthcare interfaces with high levels of efficacy, a system dynamics model with sustainability indicators is proposed. The focus of this paper is smartphone-based breathing monitoring systems that could possibly use breathing sounds as the data acquisition input. This can especially be useful for the self-testing procedure of the ongoing global COVID-19 crisis in which the lungs are attacked and breathing is affected. The method of investigation is based on a systems engineering approach using system dynamics modeling. In this paper, first, a causal model for a smartphone-based respiratory function monitoring is introduced. Then, a systems thinking approach is applied to propose a system dynamics model of the smartphone-based respiratory function monitoring system. The system dynamics model investigates the level of efficacy and sustainability of the system by studying the behavior of various factors of the system including patient wellbeing and care, cost, convenience, user friendliness, in addition to other embedded software and hardware breathing monitoring system design and performance metrics (e.g., accuracy, real-time response, etc.). The sustainability level is also studied through introducing various indicators that directly relate to the three pillars of sustainability. Various scenarios have been applied and tested on the proposed model. The results depict the dynamics of the model for the efficacy and sustainability of smartphone-based breathing monitoring systems. The proposed ideas provide a clear insight to envision sustainable and effective smartphone-based healthcare monitoring systems

    Resiliency and Risk Assessment of Smart Vision-Based Skin Screening Applications with Dynamics Modeling

    No full text
    The prevalence of skin diseases remains a concern, leading to a rising demand for the advancement of smart, portable, and non-invasive automated systems and applications. These sought-after technologies allow for the screening of skin lesions through captured images, offering improved and accessible healthcare solutions. Clinical methods include visual inspection by dermatologists; computer-aided vision-based image analysis at healthcare settings; and, lastly, biopsy tests, which are often costly and painful. Given the rise of artificial intelligence-based techniques for image segmentation, analysis, and classification, there remains a need to investigate the resiliency of personalized smartphone (hand-held) skin screening systems with respect to identified risks. This study represents a unique integration of distinct fields pertaining to smart vision-based skin lesion screening, resiliency, risk assessment, and system dynamics. The main focus is to explore the dynamics within the supply chain network of smart skin-lesion-screening systems. With the overarching aim of enhancing health, well-being, and sustainability, this research introduces a new framework designed to evaluate the resiliency of smart skin-lesion-screening applications. The proposed framework incorporates system dynamics modeling within a novel subset of a causal model. It considers the interactions and activities among key factors with unique mapping of capability and vulnerability attributes for effective risk assessment and management. The model has been rigorously tested under various case scenarios and settings. The simulation results offer insights into the model’s dynamics, demonstrating the fact that enhancing the skin screening device/app factors directly improves the resiliency level. Overall, this proposed framework marks an essential step toward comprehending and enhancing the overall resiliency of smart skin-lesion-screening systems

    A Study on CKD Progression and Health Disparities Using System Dynamics Modeling

    No full text
    Chronic kidney disease (CKD) is one of the most prevalent national health problems in the United States. According to the Center for Disease Control and Prevention (CDC), as of 2019, 37 million of the US’s adult population have been estimated to have CKD. In this respect, health disparities are major national concerns regarding the treatments for patients with CKD nationwide. The disparities observed in the healthcare interventions for patients with this disease usually indicate some significant healthcare gaps in the national public health system. However, there is a need for immediate intervention to improve the present healthcare conditions of minorities experiencing CKD nationwide. In this research, the application of system dynamics modeling is proposed to model the CKD progression and health disparities. This process is based on the health interventions administered to minorities experiencing CKD. The graphical results from the model show that there are relationships among the dynamic factors influencing the incidence and prevalence of CKD. Hence, healthcare disparities are inherent challenges in the treatment and management of this disease

    Eye-SCOR: A Supply Chain Operations Reference-Based Framework for Smart Eye Status Monitoring Using System Dynamics Modeling

    No full text
    This work is a unique integration of three different areas, including smart eye status monitoring, supply chain operations reference (SCOR), and system dynamics, to explore the dynamics of the supply chain network of smart eye/vision monitoring systems. Chronic eye diseases such as glaucoma affect millions of individuals worldwide and, if left untreated, can lead to irreversible vision loss. Nearly half of the affected population is unaware of the condition and can be informed with frequent, accessible eye/vision tests. Tonometry is the conventional clinical method used in healthcare settings to determine the intraocular pressure (IOP) level for evaluating the risk of glaucoma. There are currently very few (under development) non-contact and non-invasive methods using smartphones to determine the risk of IOP and/or the existence of other eye-related diseases conveniently at home. With the overall goal of improving health, well-being, and sustainability, this paper proposes Eye-SCOR: a supply chain operations reference (SCOR)-based framework to evaluate the effectiveness of smartphone-based eye status monitoring apps. The proposed framework is designed using system dynamics modeling as a subset of a new causal model. The model includes interaction/activities between the main players and enablers in the supply chain network, namely suppliers/service providers, smartphone app/device factors, customers, and healthcare professionals, as well as cash and information flow. The model has been tested under various scenarios and settings. Simulation results reveal the dynamics of the model and show that improving the eye status monitoring device/app factors directly increases the efficiency/Eye-SCOR level. The proposed framework serves as an important step towards understanding and improving the overall performance of the supply chain network of smart eye/vision monitoring systems

    A Review of Systems Science in the Information Systems Discipline

    No full text
    This research project examines modern applications of von Bertalanffy’s (1950, 1968) general systems theory (GST) as well the related theoretical lenses of systems thinking and systems engineering (e.g., Checkland, 1999) within the information systems (IS) domain. While there have been calls to more deeply incorporate contemporary systems science into the IS discipline (e.g., Lee, 2000; Xu, 2000), scholars indicate that little IS research is informed through systems science (Demetis & Lee, 2016). \ \ We feel that state-of-the-art concepts and methods from fields that align with systems science can generate new, boundary-expanding research within the IS discipline. We attempt to accomplish this through a structured literature review of systems science concepts in distinguished IS publications as well as an examination of trends in recent systems science literature. Specifically, current literature spanning systems engineering, systems psychology, and system dynamics are explored. Our findings reveal that systems science concepts can provide multiple productive paths for future IS research. Furthermore, lessons learned through the deeper integration of systems thinking into other disciplines, such as operational research, can provide valuable lessons (e.g., Mingers & White, 2010). \ \ This TREO talk will present initial findings from this research-in-progress and encourage discussion concerning the examined models, methodologies, taxonomies and technologies

    An Analysis of Processes, Risks, and Best Practices for Use in Developing Systems Engineering Process Simulators

    Get PDF
    AbstractSystems engineering simulation models provide a valuable means to understand and learn important concepts related to systems engineering. Simulators can be used for education and as decision support systems in order to evaluate the dynamic consequences of various courses of action. This paper examines existing research mined from literature related to systems and software engineering processes, risks, and best practices. It seeks to guide the definition of priorities for systems engineering process simulator development. The paper identifies an initial set of research opportunities for the development of systems engineering process simulators
    corecore