1 research outputs found

    Correlating Changes in Spot Filling Factors with Stellar Rotation: The Case of LkCa 4

    Get PDF
    We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA's Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈\approx 1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor, fspotf_{spot}. The best-fit models spanned two photospheric component temperatures, TphotT_{phot} = 4100 K (K7V) and 4400 K (K5V), and one spot component temperature, TspotT_{spot} = 3060 K (M5V) with an AVA_V of 0.3. We find values of fspotf_{spot} to vary between 0.77 and 0.94 with an average uncertainty of ∼\sim0.04. The variability of fspotf_{spot} is periodic and correlates with its 3.374 day rotational period. Using a mean value for fspotmeanf^{mean}_{spot} to represent the total spot coverage, we calculated spot corrected values for TeffT_{eff} and L⋆L_\star. Placing these values alongside evolutionary models developed for heavily spotted young stars, we infer mass and age ranges of 0.45-0.6 M⊙M_\odot and 0.50-1.25 Myr, respectively. These inferred values represent a twofold increase in the mass and a twofold decrease in the age as compared to standard evolutionary models. Such a result highlights the need for constraining the contributions of cool and warm regions of young stellar atmospheres when estimating TeffT_{eff} and L⋆L_\star to infer masses and ages as well as the necessity for models to account for the effects of these regions on the early evolution of low-mass stars.Comment: 21 pages, 9 Figures; Accepted for publication in Ap
    corecore