694 research outputs found
The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS
We use the Gaia-TGAS data to compare the transverse velocities in Galactic
longitude (coming from proper motions and parallaxes) in the Milky Way disk for
negative and positive longitudes as a function of distance. The transverse
velocities are strongly asymmetric and deviate significantly from the
expectations for an axisymmetric Galaxy. The value and sign of the asymmetry
changes at spatial scales of several tens of degrees in Galactic longitude and
about 0.5 kpc in distance. The asymmetry is statistically significant at 95%
confidence level for 57% of the region probed, which extends up to ~1.2 kpc. A
percentage of 24% of the region studied shows absolute differences at this
confidence level larger than 5 km/s and 7% larger than 10 km/s. The asymmetry
pattern shows mild variations in the vertical direction and with stellar type.
A first qualitative comparison with spiral arm models indicates that the arms
are unlikely to be the main source of the asymmetry. We briefly discuss
alternative origins. This is the first time that global all-sky asymmetries are
detected in the Milky Way kinematics, beyond the local neighbourhood, and with
a purely astrometric sample.Comment: Accepted for publication in A&A Letter
Design and Fabrication of Coplanar YBCO Structures on Lithium Niobate Substrates
YBa2Cu3O7-δ (YBCO) with low RF losses has been successfully deposited onto lithium niobate (LNO) to improve the performance of electrooptic Mach-Zender modulators. Epitaxial, c-axis oriented superconducting YBCO thin films have been grown on X-cut LNO single crystals with a yttria-stabilized zirconia (YSZ) buffer layer by RF magnetron sputtering. This buffer layer is needed to obtain good superconducting properties of the YBCO grown. Numerical tools have been developed to analyze CPW structures based on YBCO/YSZ/LNO trilayers, and they indicate that YSZ thickness has to be kept to the minimum necessary for good YBCO growth. With this restriction, the RF losses of YBCO/YSZ/LNO samples have been measured. The results from these measurements are used to quantify the performance enhancement in a Mach-Zender modulator using YBCO electrodes
TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2
The mechanisms that regulate pluripotency are still largely unknown. Here, we show that Telomere Repeat Binding Factor 1 (TRF1), a component of the shelterin complex, regulates the genome-wide binding of polycomb and polycomb H3K27me3 repressive marks to pluripotency genes, thereby exerting vast epigenetic changes that contribute to the maintenance of mouse ES cells in a na\uefve state. We further show that TRF1 mediates these effects by regulating TERRA, the lncRNAs transcribed from telomeres. We find that TERRAs are enriched at polycomb and stem cell genes in pluripotent cells and that TRF1 abrogation results in increased TERRA levels and in higher TERRA binding to those genes, coincidental with the induction of cell-fate programs and the loss of the na\uefve state. These results are consistent with a model in which TRF1-dependent changes in TERRA levels modulate polycomb recruitment to pluripotency and differentiation genes. These unprecedented findings explain why TRF1 is essential for the induction and maintenance of pluripotency
Effect of filtering in dense WDM metro networks adopting VCSEL-based multi-Tb/s transmitters
Long-wavelength vertical cavity surface emitting lasers (VCSELs) can represent an alternative solution for the development of transmitters with reduced cost, power consumption and footprint for very-high capacity metropolitan area systems. Multi-Tb/s transmitter modules with fine wavelength division multiplexing (WDM) granularity can be obtained adopting direct modulation (DM) with advanced modulation formats, such as discrete multitone (DMT), and aggregating multiple DM-VCSELs emitting in the C-band with WDM multiplexers in SOI chips. Due to numerous hops between nodes inside metropolitan area networks the effect of filtering can severely impact the transmission performance; we evaluate the transported capacity in function of nodes number taking into account the actual VCSEL parameters and simplified coherent detection
Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: the extended ClosER study
Clostridium difficile infection (CDI) has been primarily treated with metronidazole or vancomycin. High recurrence rates, the emergence of epidemic PCR ribotypes (RTs) and the introduction of fidaxomicin in Europe in 2011 necessitate surveillance of antimicrobial resistance and CDI epidemiology. The ClosER study monitored antimicrobial susceptibility and geographical distribution of C. difficile RTs pre- and post-fidaxomicin introduction. From 2011 to 2016, 28 European countries submitted isolates or faecal samples for determination of PCR ribotype, toxin status and minimal inhibitory concentrations (MICs) of metronidazole, vancomycin, rifampicin, fidaxomicin, moxifloxacin, clindamycin, imipenem, chloramphenicol and tigecycline. RT diversity scores for each country were calculated and mean MIC results used to generate cumulative resistant scores (CRSs) for each isolate and country. From 40 sites, 3499 isolates were analysed, of which 95% (3338/3499) were toxin positive. The most common of the 264 RTs isolated was RT027 (mean prevalence 11.4%); however, RT prevalence varied greatly between countries and between years. The fidaxomicin geometric mean MIC for years 1–5 was 0.04 mg/L; only one fidaxomicin-resistant isolate (RT344) was submitted (MIC ≥ 4 mg/L). Metronidazole and vancomycin geometric mean MICs were 0.46 mg/L and 0.70 mg/L, respectively. Of prevalent RTs, RT027, RT017 and RT012 demonstrated resistance or reduced susceptibility to multiple antimicrobials. RT diversity was inversely correlated with mean CRS for individual countries (Pearson coefficient r = − 0.57). Overall, C. difficile RT prevalence remained stable in 2011–2016. Fidaxomicin susceptibility, including in RT027, was maintained post-introduction. Reduced ribotype diversity in individual countries was associated with increased antimicrobial resistance
Sleep/wake cycle alterations as a cause of neurodegenerative diseases : A Mendelian randomization study
Sleep and/or wake cycle alterations are common in neurodegenerative diseases (ND). Our aim was to determine whether there is a causal relationship between sleep and/or wake cycle patterns and ND (Parkinson's disease (PD) age at onset (AAO), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS)) using two-sample Mendelian Randomization (MR). We selected 12 sleep traits with available Genome-Wide Association Study (GWAS) to evaluate their causal relationship with the ND risk through Inverse-Variance Weighted regression as main analysis. We used as outcome the latest ND GWAS with available summary-statistics: PD-AAO (N = 17,996), AD (N = 21,235) and ALS (N = 40,136). MR results pointed to a causal effect of subjective and objective-measured morning chronotype on later PD-AAO (95%CI:0.33-1.81, p = 8.47×10 and 95%CI:-7.28 to -4.44, p = 5.87×10, respectively). Sleep efficiency was causally associated with a decreased AD risk (95%CI:-20.408 to -0.66, p = 0.04) and daytime sleepiness with an increased ALS risk (95%CI:0.15 to 1.61, p = 0.01). Our study suggests that sleep and/or wake patterns have causal relationship with ND. Given that sleep and/or wake patterns are modifiable risk factors, sleep interventions should be investigated as a potential treatment in PD-AAO, AD and ALS
The ac magnetic response of mesoscopic type II superconductors
The response of mesoscopic superconductors to an ac magnetic field is
numerically investigated on the basis of the time-dependent Ginzburg-Landau
equations (TDGL). We study the dependence with frequency and dc
magnetic field of the linear ac susceptibility
in square samples with dimensions of the order of the London penetration depth.
At the behavior of as a function of agrees very well
with the two fluid model, and the imaginary part of the ac susceptibility,
, shows a dissipative a maximum at the frequency
. In the presence of a magnetic field a
second dissipation maximum appears at a frequency . The most
interesting behavior of mesoscopic superconductors can be observed in the
curves obtained at a fixed frequency. At a fixed number of
vortices, continuously increases with increasing . We
observe that the dissipation reaches a maximum for magnetic fields right below
the vortex penetration fields. Then, after each vortex penetration event, there
is a sudden suppression of the ac losses, showing discontinuities in
at several values of . We show that these
discontinuities are typical of the mesoscopic scale and disappear in
macroscopic samples, which have a continuos behavior of . We
argue that these discontinuities in are due to the effect of
{\it nascent vortices} which cause a large variation of the amplitude of the
order parameter near the surface before the entrance of vortices.Comment: 12 pages, 9 figures, RevTex
- …