39 research outputs found

    Connectionist perspectives on language learning, representation and processing.

    Get PDF
    The field of formal linguistics was founded on the premise that language is mentally represented as a deterministic symbolic grammar. While this approach has captured many important characteristics of the world\u27s languages, it has also led to a tendency to focus theoretical questions on the correct formalization of grammatical rules while also de-emphasizing the role of learning and statistics in language development and processing. In this review we present a different approach to language research that has emerged from the parallel distributed processing or \u27connectionist\u27 enterprise. In the connectionist framework, mental operations are studied by simulating learning and processing within networks of artificial neurons. With that in mind, we discuss recent progress in connectionist models of auditory word recognition, reading, morphology, and syntactic processing. We argue that connectionist models can capture many important characteristics of how language is learned, represented, and processed, as well as providing new insights about the source of these behavioral patterns. Just as importantly, the networks naturally capture irregular (non-rule-like) patterns that are common within languages, something that has been difficult to reconcile with rule-based accounts of language without positing separate mechanisms for rules and exceptions

    Exploring the measurement of markedness and its relationship with other linguistic variables

    Get PDF
    Antonym pair members can be differentiated by each word's markedness-that distinction attributable to the presence or absence of features at morphological or semantic levels. Morphologically marked words incorporate their unmarked counterpart with additional morphs (e.g., "unlucky" vs. "lucky"); properties used to determine semantically marked words (e.g., "short" vs. "long") are less clearly defined. Despite extensive theoretical scrutiny, the lexical properties of markedness have received scant empirical study. The current paper employs an antonym sequencing approach to measure markedness: establishing markedness probabilities for individual words and evaluating their relationship with other lexical properties (e.g., length, frequency, valence). Regression analyses reveal that markedness probability is, as predicted, related to affixation and also strongly related to valence. Our results support the suggestion that antonym sequence is reflected in discourse, and further analysis demonstrates that markedness probabilities, derived from the antonym sequencing task, reflect the ordering of antonyms within natural language. In line with the Pollyanna Hypothesis, we argue that markedness is closely related to valence; language users demonstrate a tendency to present words evaluated positively ahead of those evaluated negatively if given the choice. Future research should consider the relationship of markedness and valence, and the influence of contextual information in determining which member of an antonym pair is marked or unmarked within discourse

    Sphingolipids as cell fate regulators in lung development and disease

    Get PDF

    Introduction to the physics of the total cross section at LHC

    Get PDF

    Language and Computations

    No full text
    corecore