390 research outputs found
Simulation of Gegenbauer Processes using Wavelet Packets
In this paper, we study the synthesis of Gegenbauer processes using the
wavelet packets transform. In order to simulate a 1-factor Gegenbauer process,
we introduce an original algorithm, inspired by the one proposed by Coifman and
Wickerhauser [1], to adaptively search for the best-ortho-basis in the wavelet
packet library where the covariance matrix of the transformed process is nearly
diagonal. Our method clearly outperforms the one recently proposed by [2], is
very fast, does not depend on the wavelet choice, and is not very sensitive to
the length of the time series. From these first results we propose an algorithm
to build bases to simulate k-factor Gegenbauer processes. Given its practical
simplicity, we feel the general practitioner will be attracted to our
simulator. Finally we evaluate the approximation due to the fact that we
consider the wavelet packet coefficients as uncorrelated. An empirical study is
carried out which supports our results
A quasi-Newton proximal splitting method
A new result in convex analysis on the calculation of proximity operators in
certain scaled norms is derived. We describe efficient implementations of the
proximity calculation for a useful class of functions; the implementations
exploit the piece-wise linear nature of the dual problem. The second part of
the paper applies the previous result to acceleration of convex minimization
problems, and leads to an elegant quasi-Newton method. The optimization method
compares favorably against state-of-the-art alternatives. The algorithm has
extensive applications including signal processing, sparse recovery and machine
learning and classification
Local Linear Convergence Analysis of Primal-Dual Splitting Methods
In this paper, we study the local linear convergence properties of a
versatile class of Primal-Dual splitting methods for minimizing composite
non-smooth convex optimization problems. Under the assumption that the
non-smooth components of the problem are partly smooth relative to smooth
manifolds, we present a unified local convergence analysis framework for these
methods. More precisely, in our framework we first show that (i) the sequences
generated by Primal-Dual splitting methods identify a pair of primal and dual
smooth manifolds in a finite number of iterations, and then (ii) enter a local
linear convergence regime, which is characterized based on the structure of the
underlying active smooth manifolds. We also show how our results for
Primal-Dual splitting can be specialized to cover existing ones on
Forward-Backward splitting and Douglas-Rachford splitting/ADMM (alternating
direction methods of multipliers). Moreover, based on these obtained local
convergence analysis result, several practical acceleration techniques are
discussed. To exemplify the usefulness of the obtained result, we consider
several concrete numerical experiments arising from fields including
signal/image processing, inverse problems and machine learning, etc. The
demonstration not only verifies the local linear convergence behaviour of
Primal-Dual splitting methods, but also the insights on how to accelerate them
in practice
Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms
We propose a unifying algorithm for non-smooth non-convex optimization. The
algorithm approximates the objective function by a convex model function and
finds an approximate (Bregman) proximal point of the convex model. This
approximate minimizer of the model function yields a descent direction, along
which the next iterate is found. Complemented with an Armijo-like line search
strategy, we obtain a flexible algorithm for which we prove (subsequential)
convergence to a stationary point under weak assumptions on the growth of the
model function error. Special instances of the algorithm with a Euclidean
distance function are, for example, Gradient Descent, Forward--Backward
Splitting, ProxDescent, without the common requirement of a "Lipschitz
continuous gradient". In addition, we consider a broad class of Bregman
distance functions (generated by Legendre functions) replacing the Euclidean
distance. The algorithm has a wide range of applications including many linear
and non-linear inverse problems in signal/image processing and machine
learning
Activity Identification and Local Linear Convergence of Forward--Backward-type methods
In this paper, we consider a class of Forward--Backward (FB) splitting
methods that includes several variants (e.g. inertial schemes, FISTA) for
minimizing the sum of two proper convex and lower semi-continuous functions,
one of which has a Lipschitz continuous gradient, and the other is partly
smooth relatively to a smooth active manifold . We propose a
unified framework, under which we show that, this class of FB-type algorithms
(i) correctly identifies the active manifolds in a finite number of iterations
(finite activity identification), and (ii) then enters a local linear
convergence regime, which we characterize precisely in terms of the structure
of the underlying active manifolds. For simpler problems involving polyhedral
functions, we show finite termination. We also establish and explain why FISTA
(with convergent sequences) locally oscillates and can be slower than FB. These
results may have numerous applications including in signal/image processing,
sparse recovery and machine learning. Indeed, the obtained results explain the
typical behaviour that has been observed numerically for many problems in these
fields such as the Lasso, the group Lasso, the fused Lasso and the nuclear norm
regularization to name only a few.Comment: Full length version of the previous short on
A Multi-step Inertial Forward--Backward Splitting Method for Non-convex Optimization
In this paper, we propose a multi-step inertial Forward--Backward splitting
algorithm for minimizing the sum of two non-necessarily convex functions, one
of which is proper lower semi-continuous while the other is differentiable with
a Lipschitz continuous gradient. We first prove global convergence of the
scheme with the help of the Kurdyka-{\L}ojasiewicz property. Then, when the
non-smooth part is also partly smooth relative to a smooth submanifold, we
establish finite identification of the latter and provide sharp local linear
convergence analysis. The proposed method is illustrated on a few problems
arising from statistics and machine learning.Comment: This paper is in company with our recent work on
Forward--Backward-type splitting methods http://arxiv.org/abs/1503.0370
Sensitivity Analysis for Mirror-Stratifiable Convex Functions
This paper provides a set of sensitivity analysis and activity identification
results for a class of convex functions with a strong geometric structure, that
we coined "mirror-stratifiable". These functions are such that there is a
bijection between a primal and a dual stratification of the space into
partitioning sets, called strata. This pairing is crucial to track the strata
that are identifiable by solutions of parametrized optimization problems or by
iterates of optimization algorithms. This class of functions encompasses all
regularizers routinely used in signal and image processing, machine learning,
and statistics. We show that this "mirror-stratifiable" structure enjoys a nice
sensitivity theory, allowing us to study stability of solutions of optimization
problems to small perturbations, as well as activity identification of
first-order proximal splitting-type algorithms. Existing results in the
literature typically assume that, under a non-degeneracy condition, the active
set associated to a minimizer is stable to small perturbations and is
identified in finite time by optimization schemes. In contrast, our results do
not require any non-degeneracy assumption: in consequence, the optimal active
set is not necessarily stable anymore, but we are able to track precisely the
set of identifiable strata.We show that these results have crucial implications
when solving challenging ill-posed inverse problems via regularization, a
typical scenario where the non-degeneracy condition is not fulfilled. Our
theoretical results, illustrated by numerical simulations, allow to
characterize the instability behaviour of the regularized solutions, by
locating the set of all low-dimensional strata that can be potentially
identified by these solutions
Convergence Rates with Inexact Non-expansive Operators
In this paper, we present a convergence rate analysis for the inexact
Krasnosel'skii-Mann iteration built from nonexpansive operators. Our results
include two main parts: we first establish global pointwise and ergodic
iteration-complexity bounds, and then, under a metric subregularity assumption,
we establish local linear convergence for the distance of the iterates to the
set of fixed points. The obtained iteration-complexity result can be applied to
analyze the convergence rate of various monotone operator splitting methods in
the literature, including the Forward-Backward, the Generalized
Forward-Backward, Douglas-Rachford, alternating direction method of multipliers
(ADMM) and Primal-Dual splitting methods. For these methods, we also develop
easily verifiable termination criteria for finding an approximate solution,
which can be seen as a generalization of the termination criterion for the
classical gradient descent method. We finally develop a parallel analysis for
the non-stationary Krasnosel'skii-Mann iteration. The usefulness of our results
is illustrated by applying them to a large class of structured monotone
inclusion and convex optimization problems. Experiments on some large scale
inverse problems in signal and image processing problems are shown.Comment: This is an extended version of the work presented in
http://arxiv.org/abs/1310.6636, and is accepted by the Mathematical
Programmin
- …