30 research outputs found

    Gravitational Wave Propagation in Isotropic Cosmologies

    Get PDF
    We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmologies. The waves are modelled as small perturbations of the background Robertson-Walker geometry. The perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative (i.e. type N in the Petrov classification), we construct explicit examples for which the presence of the anisotropic stress is shown to be essential and the histories of the wave-fronts in the background Robertson-Walker geometry are shear-free null hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic theory.Comment: 27 pages, accepted for publication in Phys.Rev.

    Covariant Gauge Fixing and Canonical Quantization

    Full text link
    Theories that contain first class constraints possess gauge invariance which results in the necessity of altering the measure in the associated quantum mechanical path integral. If the path integral is derived from the canonical structure of the theory, then the choice of gauge conditions used in constructing Faddeev's measure cannot be covariant. This shortcoming is normally overcome either by using the "Faddeev-Popov" quantization procedure, or by the approach of Batalin-Fradkin-Fradkina-Vilkovisky, and then demonstrating that these approaches are equivalent to the path integral constructed from the canonical approach with Faddeev's measure. We propose in this paper an alternate way of defining the measure for the path integral when it is constructed using the canonical procedure for theories containing first class constraints and that this new approach can be used in conjunction with covariant gauges. This procedure follows the Faddeev-Popov approach, but rather than working with the form of the gauge transformation in configuration space, it employs the generator of the gauge transformation in phase space. We demonstrate this approach to the path integral by applying it to Yang-Mills theory, a spin-two field and the first order Einstein-Hilbert action in two dimensions. The problems associated with defining the measure for theories containing second-class constraints and ones in which there are fewer secondary first class constraints than primary first class constraints are discussed.Comment: 31 page

    Colliding Plane Waves in String Theory

    Full text link
    We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.Comment: latex, 25 pages, 1 figur

    Gravitons and Lightcone Fluctuations

    Get PDF
    Gravitons in a squeezed vacuum state, the natural result of quantum creation in the early universe or by black holes, will introduce metric fluctuations. These metric fluctuations will introduce fluctuations of the lightcone. It is shown that when the various two-point functions of a quantized field are averaged over the metric fluctuations, the lightcone singularity disappears for distinct points. The metric averaged functions remain singular in the limit of coincident points. The metric averaged retarded Green's function for a massless field becomes a Gaussian which is nonzero both inside and outside of the classical lightcone. This implies some photons propagate faster than the classical light speed, whereas others propagate slower. The possible effects of metric fluctuations upon one-loop quantum processes are discussed and illustrated by the calculation of the one-loop electron self-energy.Comment: 18pp, LATEX, TUTP-94-1

    Analysis of Hamiltonian formulations of linearized General Relativity

    Full text link
    The different forms of the Hamiltonian formulations of linearized General Relativity/spin-two theories are discussed in order to show their similarities and differences. It is demonstrated that in the linear model, non-covariant modifications to the initial covariant Lagrangian (similar to those modifications used in full gravity) are in fact unnecessary. The Hamiltonians and the constraints are different in these two formulations but the structure of the constraint algebra and the gauge invariance derived from it are the same. It is shown that these equivalent Hamiltonian formulations are related to each other by a canonical transformation which is explicitly given. The relevance of these results to the full theory of General Relativity is briefly discussed.Comment: Section Discussion is modified and references are added; 19 page

    Black Hole Production in Particle Collisions and Higher Curvature Gravity

    Full text link
    The problem of black hole production in transplanckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R_ijkl)^2. Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is re-analyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular `Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process.Comment: 36 pp, v2: quantum wavelength limit on particle size and shock width included; curvature estimate lowered but still well above Planck value; small modifications throughout; conclusions unchange

    Gravitational deflection of light in Rindler-type potential as a possible resolution to the observations of Bullet Cluster 1E0657-558

    Full text link
    The surface density ÎŁ\Sigma-map and the convergence Îș\kappa-map of Bullet Cluster 1E0657-558 show that the center of baryonic matters separates from the center of gravitational force, and the distribution of gravitational force do not possess spherical symmetry. This hints that a modified gravity with difference to Newtonian inverse-square law at large scale, and less symmetry is worth investigating. In this paper, we study the dynamics in Randers-Finsler spacetime. The Newtonian limit and gravitational deflection of light in a Rindler-type potential is focused in particular. It is shown that the convergence in Finsler spacetime could account for the observations of Bullet Cluster.Comment: 11 page

    Darboux coordinates for the Hamiltonian of first order Einstein-Cartan gravity

    Full text link
    Based on preliminary analysis of the Hamiltonian formulation of the first order Einstein-Cartan action (arXiv:0902.0856 [gr-qc] and arXiv:0907.1553 [gr-qc]) we derive the Darboux coordinates, which are a unique and uniform change of variables preserving equivalence with the original action in all spacetime dimensions higher than two. Considerable simplification of the Hamiltonian formulation using the Darboux coordinates, compared with direct analysis, is explicitly demonstrated. Even an incomplete Hamiltonian analysis in combination with known symmetries of the Einstein-Cartan action and the equivalence of Hamiltonian and Lagrangian formulations allows us to unambiguously conclude that the \textit{unique} \textit{gauge} invariances generated by the first class constraints of the Einstein-Cartan action and the corresponding Hamiltonian are \textit{translation and rotation in the tangent space}. Diffeomorphism invariance, though a manifest invariance of the action, is not generated by the first class constraints of the theory.Comment: 44 pages, references are added, organization of material is slightly modified (additional section is introduced), more details of calculation of the Dirac bracket between translational and rotational constraints are provide

    Energy-momentum and angular momentum of Goedel universes

    Full text link
    We discuss the Einstein energy-momentum complex and the Bergmann-Thomson angular momentum complex in general relativity and calculate them for space-time homogeneous Goedel universes. The calculations are performed for a dust acausal model and for a scalar-field causal model. It is shown that the Einstein pseudotensor is traceless, not symmetric, the gravitational energy is "density" is negative and the gravitational Poynting vector vanishes. Significantly, the total (gravitational and matter) energy "density" fro the acausal model is zero while for the casual model it is negative.The Bergmann-Thomson angular momentum complex does not vanish for both G\"odel models.Comment: an amended version, 24 pages, accepted to PR

    Ultrarelativistic black hole in an external electromagnetic field and gravitational waves in the Melvin universe

    Full text link
    We investigate the ultrarelativistic boost of a Schwarzschild black hole immersed in an external electromagnetic field, described by an exact solution of the Einstein-Maxwell equations found by Ernst (the ``Schwarzschild-Melvin'' metric). Following the classical method of Aichelburg and Sexl, the gravitational field generated by a black hole moving ``with the speed of light'' and the transformed electromagnetic field are determined. The corresponding exact solution describes an impulsive gravitational wave propagating in the static, cylindrically symmetric, electrovac universe of Melvin, and for a vanishing electromagnetic field it reduces to the well known Aichelburg-Sexl pp-wave. In the boosting process, the original Petrov type I of the Schwarzschild-Melvin solution simplifies to the type II on the impulse, and to the type D elsewhere. The geometry of the wave front is studied, in particular its non-constant Gauss curvature. In addition, a more general class of impulsive waves in the Melvin universe is constructed by means of a six-dimensional embedding formalism adapted to the background. A coordinate system is also presented in which all the impulsive metrics take a continuous form. Finally, it is shown that these solutions are a limiting case of a family of exact gravitational waves with an arbitrary profile. This family is identified with a solution previously found by Garfinkle and Melvin. We thus complement their analysis, in particular demonstrating that such spacetimes are of type II and belong to the Kundt class.Comment: 11 pages, REVTeX
    corecore