1,193 research outputs found
Electron Correlation and Charge Transfer Instability in Bilayered Two Dimensional Electron Gas
We prove that the predicted charge transfer state in symmetric bilayers of
two dimensional electron gases is always unstable at zero bias voltage, due to
interlayer correlation and/or tunneling. This is most easily seen by resorting
to a pseudospin formalism and considering coherent states obtained from the
charge transfer state through rotations of the pseudospins. Evidently, the
charge transfer state is stabilized by a sufficiently strong gate voltage, as
found in recent experiments. We show that a simple model, in which the layers
are strictly two dimensional, is able to account quantitatively for such
experimental findings, when correlation is properly included.Comment: 5 pages, 3 figures. Subm. to Europhys. Let
Chaoticity and Dissipation of Nuclear Collective Motion in a Classical Model
We analyze the behavior of a gas of classical particles moving in a
two-dimensional "nuclear" billiard whose multipole-deformed walls undergo
periodic shape oscillations. We demonstrate that a single particle Hamiltonian
containing coupling terms between the particles' motion and the collective
coordinate induces a chaotic dynamics for any multipolarity, independently on
the geometry of the billiard. The absence of coupling terms allows us to
recover qualitatively the "wall formula" predictions. We also discuss the
dissipative behavior of the wall motion and its relation with the
order-to-chaos transition in the dynamics of the microscopic degrees of
freedom.Comment: LateX, 11 pages, 7 figures available on request, to appear in the
Proceedings of XXXIV Winter Meeting on Nuclear Physics, Bormio 22-27 January,
199
Dielectric matrix and plasmon dispersion in strongly coupled electronic bilayer liquids
We develop a dielectric matrix and analyze plasmon dispersion in strongly
coupled charged-particle bilayers in the quantum domain. The formulation is
based on the classical quasi-localized charge approximation (QLCA) and extends
the QLCA formalism into the quantum domain. Its development, which parallels
that of 2D companion paper [Phys. Rev. E 70, 026406 (2004)] by three of the
authors, generalizes the single-layer scalar formalism therein to a bilayer
matrix formalism. Using pair correlation function data generated from diffusion
Monte Carlo simulations, we calculate the dispersion of the in-phase and
out-of-phase plasmon modes over a wide range of in-layer coupling values and
layer spacings. The out-of-phase spectrum exhibits an exchange-correlation
induced long-wavelength energy gap in contrast to earlier predictions of
acoustic dispersion softened by exchange-correlations. The energy gap is
similar to what has been previously predicted for classical charged-particle
bilayers and subsequently confirmed by recent molecular dynamics computer
simulations.Comment: 53 pages including 15 Figures with their captions. Submitted to
Physical Review
Anatomy of the quantum melting of the two dimensional Wigner crystal
The Fermi liquid-Wigner crystal transition in a two dimensional electronic
system is revisited with a focus on the nature of the fixed node approximation
done in quantum Monte Carlo calculations. Recently, we proposed (Phys. Rev.
Lett. 94, 046801 (2005)) that for intermediate densities, a hybrid phase (with
the symmetry of the crystal but otherwise liquid like properties) is more
stable than both the liquid and the crystal phase. Here we confirm this result
both in the thermodynamic and continuum limit. The liquid-hybrid transition
takes place at rs=31.5 +/- 0.5. We find that the stability of the hybrid phase
with respect to the crystal one is tightly linked to its delocalized nature. We
discuss the implications of our results for various transition scenarii
(quantum hexatic phase, supersolid, multiple exchange, microemulsions) proposed
in the literature.Comment: 14 pages, 16 figure
Effects of thickness on the spin susceptibility of the 2D electron gas
Using available quantum Monte Carlo predictions for a strictly 2D electron
gas, we have estimated the spin susceptibility of electrons in actual devices
taking into account the effect of the finite transverse thickness and finding a
very good agreement with experiments. A weak disorder, as found in very clean
devices and/or at densities not too low, just brings about a minor enhancement
of the susceptibility.Comment: 4 pages, 3 figure
Hybrid phase at the quantum melting of the Wigner crystal
We study the quantum melting of the two-dimensional Wigner crystal using a
fixed node quantum Monte-Carlo approach. In addition to the two already known
phases (Fermi liquid at large density and Wigner crystal at low density), we
find a third stable phase at intermediate values of the density. The third
phase has hybrid behaviors in between a liquid and a solid. This hybrid phase
has the nodal structure of a Slater determinant constructed out of the bands of
a triangular lattice.Comment: 5 pages, 4 figure
- …