268 research outputs found
Secure data sharing and analysis in cloud-based energy management systems
Analysing data acquired from one or more buildings (through specialist sensors, energy generation capability such as PV panels or smart meters) via a cloud-based Local Energy Management System (LEMS) is increasingly gaining in popularity. In a LEMS, various smart devices within a building are monitored and/or controlled to either investigate energy usage trends within a building, or to investigate mechanisms to reduce total energy demand. However, whenever we are connecting externally monitored/controlled smart devices there are security and privacy concerns. We describe the architecture and components of a LEMS and provide a survey of security and privacy concerns associated with data acquisition and control within a LEMS. Our scenarios specifically focus on the integration of Electric Vehicles (EV) and Energy Storage Units (ESU) at the building premises, to identify how EVs/ESUs can be used to store energy and reduce the electricity costs of the building. We review security strategies and identify potential security attacks that could be carried out on such a system, while exploring vulnerable points in the system. Additionally, we will systematically categorize each vulnerability and look at potential attacks exploiting that vulnerability for LEMS. Finally, we will evaluate current counter measures used against these attacks and suggest possible mitigation strategies
Coordinating multi-site construction projects using federated clouds
The requirements imposed by AEC (Architecture/Engineering/Construction) projects with regard to data storage and execution, on-demand data sharing and complexity on building simulations have led to utilising novel computing techniques. In detail, these requirements refer to storing the large amounts of data that the AEC industry generates — from building schematics to associated data derived from different contractors that are involved at various stages of the building lifecycle; or running simulations on building models (such as energy efficiency, environmental impact & occupancy simulations). Creating such a computing infrastructure to support operations deriving from various AEC projects can be challenging due to the complexity of workflows, distributed nature of the data and diversity of roles, profiles and location of the users. Federated clouds have provided the means to create a distributed environment that can support multiple individuals and organisations to work collaboratively. In this study we present how multi-site construction projects can be coordinated by the use of federated clouds where the interacting parties are represented by AEC industry organisations. We show how coordination can support (a) data sharing and interoperability using a multi-vendor Cloud environment and (b) process interoperability based on various stakeholders involved in the AEC project lifecycle. We develop a framework that facilitates project coordination with associated “issue status” implications and validate our outcome in a real construction project
Blockchain in a Business Model: Exploring Benefits and Risks
Although a blockchain has the potential to redefine value creation, delivery and capture activities in organisations, research on business model innovation from a blockchain perspective is still developing. This paper provides an analysis of literature on the use of blockchain in business model innovation. This analysis reconciles the technological and management perspectives to explore blockchain technology characteristics in relation to benefits and risks for business models. The findings contribute to the emerging stream of research discussing the business implications of innovative technologies, describing how blockchain networks can have an impact on business processes
Emotions behind drive-by download propagation on Twitter
Twitter has emerged as one of the most popular platforms to get updates on entertainment and current events. However, due to its 280 character restriction and automatic shortening of URLs, it is continuously targeted by cybercriminals to carry out drive-by download attacks, where a user’s system is infected by merely visiting a Web page. Popular events that attract a large number of users are used by cybercriminals to infect and propagate malware by using popular hashtags and creating misleading tweets to lure users to malicious Web pages. A drive-by download attack is carried out by obfuscating a malicious URL in an enticing tweet and used as clickbait to lure users to a malicious Web page. In this paper we answer the following two questions: Why are certain malicious tweets retweeted more than others? Do emotions reflecting in a tweet drive virality? We gathered tweets from seven different sporting events over three years and identified those tweets that used to carry to out a drive-by download attack. From the malicious (N=105,642) and benign (N=169,178) data sample identified, we built models to predict information flow size and survival. We define size as the number of retweets of an original tweet, and survival as the duration of the original tweet’s presence in the study window. We selected the zero-truncated negative binomial (ZTNB) regression method for our analysis based on the distribution exhibited by our dependent size measure and the comparison of results with other predictive models. We used the Cox regression technique to model the survival of information flows as it estimates proportional hazard rates for independent measures. Our results show that both social and content factors are statistically significant for the size and survival of information flows for both malicious and benign tweets. In the benign data sample, positive emotions and positive sentiment reflected in the tweet significantly predict size and survival. In contrast, for the malicious data sample, negative emotions, especially fear, are associated with both size and survival of information flows
Cloud computing for the architecture, engineering & construction sector: requirements, prototype & experience
The Architecture, Engineering \& Construction (AEC) sector is a highly fragmented, data intensive, project based industry, involving a number of very different professions and organisations. Projects carried out within this sector involve collaboration between various people, using a variety of different systems. This, along with the industry's strong data sharing and processing requirements, means that the management of building data is complex and challenging. This paper presents a solution to data sharing requirements of the AEC sector by utilising Cloud Computing. Our solution presents two key contributions, first a governance model for building data, based on extensive research and industry consultation. Second, a prototype implementation of this governance model, utilising the CometCloud autonomic cloud computing engine based on the Master/Work paradigm. we have integrated our prototype with the 3D modelling software Google Sketchup. The approach and prototype presented has applicability in a number of other eScience related applications involving multi-disciplinary, collaborative working using Cloud computing infrastructure
Scalable local energy management systems
Commercial buildings have been identified as a major contributor of total global energy consumption. Mechanisms for collecting data about energy consumption patterns within buildings, and their subsequent analysis to support demand estimation (and reduction) remain important research challenges, which have already attracted considerable work. We propose a cloud based energy management system that enables such analysis to scale to both increasing data volumes and number of buildings. We consider both energy consumption and storage to support: (i) flattening the peak demand of commercial building(s); (ii) enable a “cost reduction” mode where the demand of a commercial building is reduced for those hours when a “triad peak” is expected; and (iii) enables a building manager to participate in grid balancing services market by means of demand response. The energy management system is deployed on a cloud infrastructure that adapts the number of computational resources needed to estimate potential demand, and to adaptively run multiple what-if scenarios to choose the most optimum configuration to reduce building energy demand
Feedback-control & queueing theory-based resource management for streaming applications
Recent advances in sensor technologies and instrumentation have led to an extraordinary growth of data sources and streaming applications. A wide variety of devices, from smart phones to dedicated sensors, have the capability of collecting and streaming large amounts of data at unprecedented rates. A number of distinct streaming data models have been proposed. Typical applications for this include smart cites & built environments for instance, where sensor-based infrastructures continue to increase in scale and variety. Understanding how such streaming content can be processed within some time threshold remains a non-trivial and important research topic. We investigate how a cloud-based computational infrastructure can autonomically respond to such streaming content, offering Quality of Service guarantees. We propose an autonomic controller (based on feedback control and queueing theory) to elastically provision virtual machines to meet performance targets associated with a particular data stream. Evaluation is carried out using a federated Cloud-based infrastructure (implemented using CometCloud) – where the allocation of new resources can be based on: (i) differences between sites, i.e. types of resources supported (e.g. GPU vs. CPU only), (ii) cost of execution; (iii) failure rate and likely resilience, etc. In particular, we demonstrate how Little’s Law –a widely used result in queuing theory– can be adapted to support dynamic control in the context of such resource provisioning
- …