10,558 research outputs found
Effects of Hybrid Poplar (Salicaceae) Clone and Phenology on Gypsy Moth (Lepidoptera: Lymantriidae) Performance in Wisconsin
Gypsy moth (Lymantria dispar) developmental interactions with two hybrid Populus species clones were studied in laboratory trials. Significant differences in larval performance were found between clones and within the same clone at different phenological states. No larvae were able to complete development on clone NM6. All gypsy moth larvae feeding on clone NC5271 survived when leafflush was synchronized with gypsy moth eclosion in early May. However, neonates feeding on NC5271 foliage in July experienced in- creased mortality. Weights of surviving gypsy moth larvae feeding on NC5271 foliage in May versus July were not significantly different
Modification of cosmic-ray energy spectra by stochastic acceleration
Context: Typical space plasmas contain spatially and temporally variable
turbulent electromagnetic fields. Understanding the transport of energetic
particles and the acceleration mechanisms for charged particles is an important
goal of today's astroparticle physics. Aims: To understand the acceleration
mechanisms at the particle source, subsequent effects have to be known.
Therefore, the modification of a particle energy distribution, due to
stochastic acceleration, needs to be investigated. Methods: The diffusion in
momentum space was investigated by using both a Monte-Carlo simulation code and
by analytically solving the momentum-diffusion equation. For simplicity, the
turbulence was assumed to consist of one-dimensional Alfven waves. Results:
Using both methods, it is shown that, on average, all particles with velocities
comparable to the Alfven speeds are accelerated. This influences the energy
distribution by significantly increasing the energy spectral index.
Conclusions: Because of electromagnetic turbulence, a particle energy spectrum
measured at Earth can drastically deviate from its initial spectrum. However,
for particles with velocities significantly above the Alfven speed, the effect
becomes negligible.Comment: 10 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
GEOTAIL Spacecraft historical data report
The purpose of this GEOTAIL Historical Report is to document ground processing operations information gathered on the GEOTAIL mission during processing activities at the Cape Canaveral Air Force Station (CCAFS). It is hoped that this report may aid management analysis, improve integration processing and forecasting of processing trends, and reduce real-time schedule changes. The GEOTAIL payload is the third Delta 2 Expendable Launch Vehicle (ELV) mission to document historical data. Comparisons of planned versus as-run schedule information are displayed. Information will generally fall into the following categories: (1) payload stay times (payload processing facility/hazardous processing facility/launch complex-17A); (2) payload processing times (planned, actual); (3) schedule delays; (4) integrated test times (experiments/launch vehicle); (5) unique customer support requirements; (6) modifications performed at facilities; (7) other appropriate information (Appendices A & B); and (8) lessons learned (reference Appendix C)
An elliptic expansion of the potential field source surface model
Context. The potential field source surface model is frequently used as a
basis for further scientific investigations where a comprehensive coronal
magnetic field is of importance. Its parameters, especially the position and
shape of the source surface, are crucial for the interpretation of the state of
the interplanetary medium. Improvements have been suggested that introduce one
or more additional free parameters to the model, for example, the current sheet
source surface (CSSS) model.
Aims. Relaxing the spherical constraint of the source surface and allowing it
to be elliptical gives modelers the option of deforming it to more accurately
match the physical environment of the specific period or location to be
analyzed.
Methods. A numerical solver is presented that solves Laplace's equation on a
three-dimensional grid using finite differences. The solver is capable of
working on structured spherical grids that can be deformed to create elliptical
source surfaces.
Results. The configurations of the coronal magnetic field are presented using
this new solver. Three-dimensional renderings are complemented by
Carrington-like synoptic maps of the magnetic configuration at different
heights in the solar corona. Differences in the magnetic configuration computed
by the spherical and elliptical models are illustrated.Comment: 11 pages, 7 figure
Some Reactions of 4-Chlorocinnoline
This problem involves the preparation of 4-chlorocinnoline by the method of Borshe and Herbert and Busch and Rast,, and the study of further replacement reactions of the chlorine atom in the 4-position. The problem can be subdivided into two sections: (1) the preparation of the 4-cinnolyl Grignard reagent and the corresponding lithium compound and (2) the study of some condensation reactions of 4-chlorocinnoline
Self-organization and Mechanical Properties of Active Filament Bundles
A phenomenological description for active bundles of polar filaments is
presented. The activity of the bundle results from crosslinks, that induce
relative displacements between the aligned filaments. Our generic description
is based on momentum conservation within the bundle. By specifying the internal
forces, a simple minimal model for the bundle dynamics is obtained, capturing
generic dynamic behaviors. In particular, contracted states as well as solitary
and oscillatory waves appear through dynamic instabilities. The introduction of
filament adhesion leads to self-organized persistent filament transport.
Furthermore, calculating the tension, homogeneous bundles are shown to be able
to actively contract and to perform work against external forces. Our
description is motivated by dynamic phenomena in the cytoskeleton and could
apply to stress-fibers and self-organization phenomena during cell-locomotion.Comment: 19 pages, 10 figure
Nonlinear competition between asters and stripes in filament-motor-systems
A model for polar filaments interacting via molecular motor complexes is
investigated which exhibits bifurcations to spatial patterns. It is shown that
the homogeneous distribution of filaments, such as actin or microtubules, may
become either unstable with respect to an orientational instability of a finite
wave number or with respect to modulations of the filament density, where long
wavelength modes are amplified as well. Above threshold nonlinear interactions
select either stripe patterns or periodic asters. The existence and stability
ranges of each pattern close to threshold are predicted in terms of a weakly
nonlinear perturbation analysis, which is confirmed by numerical simulations of
the basic model equations. The two relevant parameters determining the
bifurcation scenario of the model can be related to the concentrations of the
active molecular motors and of the filaments respectively, which both could be
easily regulated by the cell.Comment: 13 pages, 7 figure
Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050
The Sun is a highly dynamic environment that exhibits dynamic behavior on
many different timescales. In particular, coronal holes exhibit temporal and
spatial variability. Signatures of these coronal dynamics are inherited by the
coronal hole wind streams that originate in these regions and can effect the
Earth's magnetosphere. Both the cause of the observed variabilities and how
these translate to fluctuations in the in situ observed solar wind is not yet
fully understood. During solar activity minimum the structure of the magnetic
field typically remains stable over several Carrington rotations (CRs). But how
stable is the solar magnetic field? Here, we address this question by analyzing
the evolution of a coronal hole structure and the corresponding coronal hole
wind stream emitted from this source region over 12 consecutive CRs in 2006. To
this end, we link in situ observations of Solar Wind Ion Composition
Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with
synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric
Observatory (SOHO) at the photospheric level through a combination of ballistic
back-mapping and a potential field source surface (PFSS) approach. Together,
these track the evolution of the open field line region that is identified as
the source region of a recurring coronal hole wind stream.
We find that the shape of the open field line region and to some extent also
the solar wind properties are influenced by surrounding more dynamic closed
loop regions. We show that the freeze-in order can change within a coronal hole
wind stream on small timescales and illustrate a mechanism that can cause
changes in the freeze-in order. The inferred minimal temperature profile is
variable even within coronal hole wind and is in particular most variable in
the outer corona
Artificial intelligence for geologic mapping with imaging spectrometers
This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets
- …