1,565 research outputs found
Effects of anisotropy in a nonlinear crystal for squeezed vacuum generation
Squeezed vacuum (SV) can be obtained by an optical parametric amplifier (OPA)
with the quantum vacuum state at the input. We are interested in a degenerate
type-I OPA based on parametric down-conversion (PDC) where due to phase
matching requirements, an extraordinary polarized pump must impinge onto a
birefringent crystal with a large \chi(2) nonlinearity. As a consequence of the
optical anisotropy of the medium, the direction of propagation of the pump
wavevector does not coincide with the direction of propagation of its energy,
an effect known as transverse walk-off. For certain pump sizes and crystal
lengths, the transverse walk-off has a strong influence on the spatial spectrum
of the generated radiation, which in turn affects the outcome of any experiment
in which this radiation is employed. In this work we propose a method that
reduces the distortions of the two-photon amplitude (TPA) of the states
considered, by using at least two consecutive crystals instead of one. We show
that after anisotropy compensation the TPA becomes symmetric, allowing for a
simple Schmidt expansion, a procedure that in practice requires states that
come from experimental systems free of anisotropy effects
Tuning Energy Relaxation along Quantum Hall Channels
The chiral edge channels in the quantum Hall regime are considered ideal
ballistic quantum channels, and have quantum information processing
potentialities. Here, we demonstrate experimentally, at filling factor 2, the
efficient tuning of the energy relaxation that limits quantum coherence and
permits the return toward equilibrium. Energy relaxation along an edge channel
is controllably enhanced by increasing its transmission toward a floating ohmic
contact, in quantitative agreement with predictions. Moreover, by forming a
closed inner edge channel loop, we freeze energy exchanges in the outer
channel. This result also elucidates the inelastic mechanisms at work at
filling factor 2, informing us in particular that those within the outer edge
channel are negligible.Comment: 8 pages including supplementary materia
Noise dephasing in the edge states of the Integer Quantum Hall regime
An electronic Mach Zehnder interferometer is used in the integer quantum hall
regime at filling factor 2, to study the dephasing of the interferences. This
is found to be induced by the electrical noise existing in the edge states
capacitively coupled to each others. Electrical shot noise created in one
channel leads to phase randomization in the other, which destroys the
interference pattern. These findings are extended to the dephasing induced by
thermal noise instead of shot noise: it explains the underlying mechanism
responsible for the finite temperature coherence time of the
edge states at filling factor 2, measured in a recent experiment. Finally, we
present here a theory of the dephasing based on Gaussian noise, which is found
in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure
Tomonaga-Luttinger physics in electronic quantum circuits
In one-dimensional conductors, interactions result in correlated electronic
systems. At low energy, a hallmark signature of the so-called
Tomonaga-Luttinger liquids (TLL) is the universal conductance curve predicted
in presence of an impurity. A seemingly different topic is the quantum laws of
electricity, when distinct quantum conductors are assembled in a circuit. In
particular, the conductances are suppressed at low energy, a phenomenon called
dynamical Coulomb blockade (DCB). Here we investigate the conductance of
mesoscopic circuits constituted by a short single-channel quantum conductor in
series with a resistance, and demonstrate a proposed link to TLL physics. We
reformulate and establish experimentally a recently derived phenomenological
expression for the conductance using a wide range of circuits, including carbon
nanotube data obtained elsewhere. By confronting both conductance data and
phenomenological expression with the universal TLL curve, we demonstrate
experimentally the predicted mapping between DCB and the transport across a TLL
with an impurity.Comment: 9p,6fig+SI; to be published in nature comm; v2: mapping extended to
finite range interactions, added discussion and SI material, added reference
Strong back-action of a linear circuit on a single electronic quantum channel
What are the quantum laws of electricity in mesoscopic circuits? This very
fundamental question has also direct implications for the quantum engineering
of nanoelectronic devices. Indeed, when a quantum coherent conductor is
inserted into a circuit, its transport properties are modified. In particular,
its conductance is reduced because of the circuit back-action. This phenomenon,
called environmental Coulomb blockade, results from the granularity of charge
transfers across the coherent conductor. Although extensively studied for a
tunnel junction in a linear circuit, it is only fully understood for arbitrary
short coherent conductors in the limit of small circuit impedances and small
conductance reduction. Here, we investigate experimentally the strong
back-action regime, with a conductance reduction of up to 90%. This is achieved
by embedding a single quantum channel of tunable transmission in an adjustable
on-chip circuit of impedance comparable to the resistance quantum
at microwave frequencies. The experiment reveals important deviations from
calculations performed in the weak back-action framework, and matches with
recent theoretical results. From these measurements, we propose a generalized
expression for the conductance of an arbitrary quantum channel embedded in a
linear circuit.Comment: 11 pages including supplementary information, to be published in
Nature Physic
Primary thermometry triad at 6 mK in mesoscopic circuits
Quantum physics emerge and develop as temperature is reduced. Although
mesoscopic electrical circuits constitute an outstanding platform to explore
quantum behavior, the challenge in cooling the electrons impedes their
potential. The strong coupling of such micrometer-scale devices with the
measurement lines, combined with the weak coupling to the substrate, makes them
extremely difficult to thermalize below 10 mK and imposes in-situ thermometers.
Here we demonstrate electronic quantum transport at 6 mK in micrometer-scale
mesoscopic circuits. The thermometry methods are established by the comparison
of three in-situ primary thermometers, each involving a different underlying
physics. The employed combination of quantum shot noise, quantum back-action of
a resistive circuit and conductance oscillations of a single-electron
transistor covers a remarkably broad spectrum of mesoscopic phenomena. The
experiment, performed in vacuum using a standard cryogen-free dilution
refrigerator, paves the way toward the sub-millikelvin range with additional
thermalization and refrigeration techniques.Comment: Article and Supplementar
- …