40,222 research outputs found

    Non-perturbative double scaling limits

    Get PDF
    Recently, the author has proposed a generalization of the matrix and vector models approach to the theory of random surfaces and polymers. The idea is to replace the simple matrix or vector (path) integrals by gauge theory or non-linear sigma model (path) integrals. We explain how this solves one of the most fundamental limitation of the classic approach: we automatically obtain non-perturbative definitions in non-Borel summable cases. This is exemplified on the simplest possible examples involving O(N) symmetric non-linear sigma models with N-dimensional target spaces, for which we construct (multi)critical metrics. The non-perturbative definitions of the double scaled, manifestly positive, partition functions rely on remarkable identities involving (path) integrals.Comment: 18 pages, one figur

    Glueball operators and the microscopic approach to N=1 gauge theories

    Full text link
    We explain how to generalize Nekrasov's microscopic approach to N=2 gauge theories to the N=1 case, focusing on the typical example of the U(N) theory with one adjoint chiral multiplet X and an arbitrary polynomial tree-level superpotential Tr W(X). We provide a detailed analysis of the generalized glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa matrix model and of the generalized Konishi anomaly equations. We compute in particular the non-trivial quantum corrections to the Virasoro operators and algebra that generate these equations. We have performed explicit calculations up to two instantons, that involve the next-to-leading order corrections in Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of references corrected, version to appear in JHE

    Nielsen Identity and the Renormalization Group Functions in an Abelian Supersymmetric Chern-Simons Model in the Superfield Formalism

    Full text link
    In this paper we study the Nielsen identity for the supersymmetric Chern-Simons-matter model in the superfield formalism, in three spacetime dimensions. The Nielsen identity is essential to understand the gauge invariance of the symmetry breaking mechanism, and it is calculated by using the BRST invariance of the model. We discuss the technical difficulties in applying this identity to the complete effective superpotential, but we show how we can study in detail the gauge independence of one part of the effective superpotential, KeffK_{eff}. We calculate the renormalization group functions of the model for arbitrary gauge-fixing parameter, finding them to be independent of the gauge choice. This result can be used to argue that KeffK_{eff} also does not depend on the gauge parameter. We discuss the possibility of the extension of these results to the complete effective superpotential.Comment: v2: 23 pages, 4 figures, version accepted for publication in PR

    Microscopic quantum superpotential in N=1 gauge theories

    Full text link
    We consider the N=1 super Yang-Mills theory with gauge group U(N), adjoint chiral multiplet X and tree-level superpotential Tr W(X). We compute the quantum effective superpotential W_mic as a function of arbitrary off-shell boundary conditions at infinity for the scalar field X. This effective superpotential has a remarkable property: its critical points are in one-to-one correspondence with the full set of quantum vacua of the theory, providing in particular a unified picture of solutions with different ranks for the low energy gauge group. In this sense, W_mic is a good microscopic effective quantum superpotential for the theory. This property is not shared by other quantum effective superpotentials commonly used in the literature, like in the strong coupling approach or the glueball superpotentials. The result of this paper is a first step in extending Nekrasov's microscopic derivation of the Seiberg-Witten solution of N=2 super Yang-Mills theories to the realm of N=1 gauge theories.Comment: 23 pages, 1 figure; typos corrected, version to appear in JHE

    Matrix Models, Argyres-Douglas singularities and double scaling limits

    Full text link
    We construct an N=1 theory with gauge group U(nN) and degree n+1 tree level superpotential whose matrix model spectral curve develops an A_{n+1} Argyres-Douglas singularity. We evaluate the coupling constants of the low-energy U(1)^n theory and show that the large N expansion is singular at the Argyres-Douglas points. Nevertheless, it is possible to define appropriate double scaling limits which are conjectured to yield four dimensional non-critical string theories as proposed by Ferrari. In the Argyres-Douglas limit the n-cut spectral curve degenerates into a solution with n/2 cuts for even n and (n+1)/2 cuts for odd n.Comment: 31 pages, 1 figure; the expression of the superpotential has been corrected and the calculation of the coupling constants of the low-energy theory has been adde
    corecore