40,222 research outputs found
Non-perturbative double scaling limits
Recently, the author has proposed a generalization of the matrix and vector
models approach to the theory of random surfaces and polymers. The idea is to
replace the simple matrix or vector (path) integrals by gauge theory or
non-linear sigma model (path) integrals. We explain how this solves one of the
most fundamental limitation of the classic approach: we automatically obtain
non-perturbative definitions in non-Borel summable cases. This is exemplified
on the simplest possible examples involving O(N) symmetric non-linear sigma
models with N-dimensional target spaces, for which we construct (multi)critical
metrics. The non-perturbative definitions of the double scaled, manifestly
positive, partition functions rely on remarkable identities involving (path)
integrals.Comment: 18 pages, one figur
Glueball operators and the microscopic approach to N=1 gauge theories
We explain how to generalize Nekrasov's microscopic approach to N=2 gauge
theories to the N=1 case, focusing on the typical example of the U(N) theory
with one adjoint chiral multiplet X and an arbitrary polynomial tree-level
superpotential Tr W(X). We provide a detailed analysis of the generalized
glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa
matrix model and of the generalized Konishi anomaly equations. We compute in
particular the non-trivial quantum corrections to the Virasoro operators and
algebra that generate these equations. We have performed explicit calculations
up to two instantons, that involve the next-to-leading order corrections in
Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of
references corrected, version to appear in JHE
Nielsen Identity and the Renormalization Group Functions in an Abelian Supersymmetric Chern-Simons Model in the Superfield Formalism
In this paper we study the Nielsen identity for the supersymmetric
Chern-Simons-matter model in the superfield formalism, in three spacetime
dimensions. The Nielsen identity is essential to understand the gauge
invariance of the symmetry breaking mechanism, and it is calculated by using
the BRST invariance of the model. We discuss the technical difficulties in
applying this identity to the complete effective superpotential, but we show
how we can study in detail the gauge independence of one part of the effective
superpotential, . We calculate the renormalization group functions of
the model for arbitrary gauge-fixing parameter, finding them to be independent
of the gauge choice. This result can be used to argue that also does
not depend on the gauge parameter. We discuss the possibility of the extension
of these results to the complete effective superpotential.Comment: v2: 23 pages, 4 figures, version accepted for publication in PR
Microscopic quantum superpotential in N=1 gauge theories
We consider the N=1 super Yang-Mills theory with gauge group U(N), adjoint
chiral multiplet X and tree-level superpotential Tr W(X). We compute the
quantum effective superpotential W_mic as a function of arbitrary off-shell
boundary conditions at infinity for the scalar field X. This effective
superpotential has a remarkable property: its critical points are in one-to-one
correspondence with the full set of quantum vacua of the theory, providing in
particular a unified picture of solutions with different ranks for the low
energy gauge group. In this sense, W_mic is a good microscopic effective
quantum superpotential for the theory. This property is not shared by other
quantum effective superpotentials commonly used in the literature, like in the
strong coupling approach or the glueball superpotentials. The result of this
paper is a first step in extending Nekrasov's microscopic derivation of the
Seiberg-Witten solution of N=2 super Yang-Mills theories to the realm of N=1
gauge theories.Comment: 23 pages, 1 figure; typos corrected, version to appear in JHE
Matrix Models, Argyres-Douglas singularities and double scaling limits
We construct an N=1 theory with gauge group U(nN) and degree n+1 tree level
superpotential whose matrix model spectral curve develops an A_{n+1}
Argyres-Douglas singularity. We evaluate the coupling constants of the
low-energy U(1)^n theory and show that the large N expansion is singular at the
Argyres-Douglas points. Nevertheless, it is possible to define appropriate
double scaling limits which are conjectured to yield four dimensional
non-critical string theories as proposed by Ferrari. In the Argyres-Douglas
limit the n-cut spectral curve degenerates into a solution with n/2 cuts for
even n and (n+1)/2 cuts for odd n.Comment: 31 pages, 1 figure; the expression of the superpotential has been
corrected and the calculation of the coupling constants of the low-energy
theory has been adde
- …
