13 research outputs found

    Accumulation of the PhaP Phasin of Ralstonia eutropha Is Dependent on Production of Polyhydroxybutyrate in Cells

    No full text
    Polyhydroxyalkanoates (PHAs) are polyoxoesters that are produced by diverse bacteria and that accumulate as intracellular granules. Phasins are granule-associated proteins that accumulate to high levels in strains that are producing PHAs. The accumulation of phasins has been proposed to be dependent on PHA production, a model which is now rigorously tested for the phasin PhaP of Ralstonia eutropha. R. eutropha phaC PHA synthase and phaP phasin gene replacement strains were constructed. The strains were engineered to express heterologous and/or mutant PHA synthase alleles and a phaP-gfp translational fusion in place of the wild-type alleles of phaC and phaP. The strains were analyzed with respect to production of polyhydroxybutyrate (PHB), accumulation of PhaP, and expression of the phaP-gfp fusion. The results suggest that accumulation of PhaP is strictly dependent on the genetic capacity of strains to produce PHB, that PhaP accumulation is regulated at the level of both PhaP synthesis and PhaP degradation, and that, within mixed populations of cells, PhaP accumulation within cells of a given strain is not influenced by PHB production in cells of other strains. Interestingly, either the synthesis of PHB or the presence of relatively large amounts of PHB in cells (>50% of cell dry weight) is sufficient to enable PhaP synthesis. The results suggest that R. eutropha has evolved a regulatory mechanism that can detect the synthesis and presence of PHB in cells and that PhaP expression can be used as a marker for the production of PHB in individual cells

    DNA bending and a flip-out mechanism for base excision by the helix–hairpin–helix DNA glycosylase, Escherichia coli AlkA

    No full text
    The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner

    A dimer-specific function of the transcription factor NFATp

    No full text
    The transcription factor NFATp integrates multiple signal transduction pathways through coordinate binding with basic-region leucine zipper (bZIP) proteins and other transcription factors. The NFATp monomer, even in the absence of its activation domains, recruits bZIP proteins to canonical NFAT–bZIP composite DNA elements. By contrast, the NFATp dimer and its bZIP partner bind noncooperatively to the NFAT–bZIP element of the tumor necrosis factor (TNF) gene promoter. This observation raises the possibility that the function of the activation domains of NFATp is dimer-specific. Here, we determine the consensus DNA binding site of the NFATp dimer, describe monomer- and dimer-specific NFATp–DNA contact patterns, and demonstrate that NFATp dimerization and dimer-specific activation subdomains are required for transcriptional activation from the TNF NFAT–bZIP element. We also show that these NFATp subdomains interact with the coactivator CBP (CREB-binding protein), which is required for NFATp-dependent TNF gene transcription. Thus, the context-specific function of the activation domains of NFAT can be potentiated by DNA-directed dimerization

    Oxidation of Phenolate Siderophores by the Multicopper Oxidase Encoded by the Escherichia coli yacK Gene

    No full text
    A gene (yacK) encoding a putative multicopper oxidase (MCO) was cloned from Escherichia coli, and the expressed enzyme was demonstrated to exhibit phenoloxidase and ferroxidase activities. The purified protein contained six copper atoms per polypeptide chain and displayed optical and electron paramagnetic resonance (EPR) spectra consistent with the presence of type 1, type 2, and type 3 copper centers. The strong optical A(610) (Ε(610) = 10,890 M(−1) cm(−1)) and copper stoichiometry were taken as evidence that, similar to ceruloplasmin, the enzyme likely contains multiple type 1 copper centers. The addition of copper led to immediate and reversible changes in the optical and EPR spectra of the protein, as well as decreased thermal stability of the enzyme. Copper addition also stimulated both the phenoloxidase and ferroxidase activities of the enzyme, but the other metals tested had no effect. In the presence of added copper, the enzyme displayed significant activity against two of the phenolate siderophores utilized by E. coli for iron uptake, 2,3-dihydroxybenzoate and enterobactin, as well as 3-hydroxyanthranilate, an iron siderophore utilized by Saccharomyces cerevisiae. Oxidation of enterobactin produced a colored precipitate suggestive of the polymerization reactions that characterize microbial melanization processes. As oxidation should render the phenolate siderophores incapable of binding iron, yacK MCO activity could influence levels of free iron in the periplasm in response to copper concentration. This mechanism may explain, in part, how yacK MCO moderates the sensitivity of E. coli to copper
    corecore