12 research outputs found
Agricultural Residues as a Source of Bioactive Substances—Waste Management with the Idea of Circular Economy
Every year, the juice industry generates millions of tons of by-products worldwide such as seeds, skins and pomace. This creates significant environmental problems. It is estimated that about 25% of the fruit weight used in juice production is waste. However, even after processing, this waste contains high amounts of valuable bioactive substances. Phenolic compounds and pectin have been found to be the main components of apple pomace and are responsible for its antioxidant, anti-inflammatory, antibacterial, antifungal, and anticancer properties. However, the low bioavailability and sensitivity of some chemicals limit their use in many areas. Advanced extraction techniques and encapsulation of apple pomace extracts is a promising technique to overcome these problems and increasing their applicability (e.g., in the cosmetic, pharmaceutical, or food industries)
Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors
In many countries, apple pomace (AP) is one of the most produced types of agri-food waste (globally, it is produced at a rate of ~4 million tons/year). If not managed properly, such bio-organic waste can cause serious pollution of the natural environment and public health hazards, mainly due to the risk of microbial contamination. This review shows that AP can be successfully reused in different industrial sectors—for example, as a source of energy and bio-materials—according to the idea of sustainable development. The recovered active compounds from AP can be applied as preservatives, antioxidants, anti-corrosion agents, wood protectors or biopolymers. Raw or processed forms of AP can also be considered as feedstocks for various bioenergy applications such as the production of intermediate bioenergy carriers (e.g., biogas and pyrolysis oil), and materials (e.g., biochar and activated carbon). In the future, AP and its active ingredients can be of great use due to their non-toxicity, biodegradability and biocompatibility. Given the increasing mass of produced AP, the commercial applications of AP could have a huge economic impact in the future
Metal–Flavonoid Interactions—From Simple Complexes to Advanced Systems
For many years, metal–flavonoid complexes have been widely studied as a part of drug discovery programs, but in the last decade their importance in materials science has increased significantly. A deeper understanding of the role of metal ions and flavonoids in constructing simple complexes and more advanced hybrid networks will facilitate the assembly of materials with tailored architecture and functionality. In this Review, we highlight the most essential data on metal–flavonoid systems, presenting a promising alternative in the design of hybrid inorganic–organic materials. We focus mainly on systems containing CuII/I and FeIII/II ions, which are necessary in natural and industrial catalysis. We discuss two kinds of interactions that typically ensure the formation of metal–flavonoid systems, namely coordination and redox reactions. Our intention is to cover the fundamentals of metal–flavonoid systems to show how this knowledge has been already transferred from small molecules to complex materials
Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds
Abstract In the study the cold-pressed, natural (unfiltered, unrefined) vegetable oils: hemp and milk thistle seed oils were tested for their chemical composition and antioxidant properties. The physico-chemical parameters, content of saturated and unsaturated fatty acids were determined. Solid phase extraction and simple extraction with the use of methanol, ethanol, 80% methanol, 80% ethanol were used to obtain the extracts for the analysis of antioxidant activity and phenolic compounds in oils. The composition of phenolic compounds was studied by means of high-performance liquid chromatography (HPLC–DAD) and spectrophotometric test with the Folin-Ciocalteu reagent. The antioxidant property of extracts was established by means of the following methods: with the DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical, ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical, FRAP (ferric ion reducing antioxidant parameter) and CUPRAC (cupric-reducing antioxidant capacity). Moreover the influence of chlorogenic acid on the inhibition of lipid peroxidation process in the hemp and milk thistle seed oils was also investigated. The tested oils showed different antioxidant properties which was related to the their different chemical composition. The main phenolic compounds present in hemp seed oil were vanillic, ferulic and p-coumaric acids, (-)epicatechin, catechin, kaempferol and procyanidin B2, whereas in milk thistle seed oil—catechins, procyanidin B2, procyanidin C1, p-coumaric acid, phloridzin, quercetin, protocatechuic acid, kaempferol, and syringic acid. The methanolic extracts of hemp and milk thistle seed oils showed the highest antiradical activity, whereas the ethanolic extracts revealed the best reducing properties. The obtained antioxidant parameters for hemp seed oil were: the IC50 = 3.433 ± 0.017 v/v (DPPH test), the percent of ABTS•+ inhibition = 93.301 ± 1.099%, FRAP value = 1063.883 ± 39.225 µmol Fe2+, CUPRAC value = 420.471 ± 1.765 µmol of Trolox. Whereas the antioxidant parameters for milk thistle seed oil were: the IC50 = 5.280 ± 0.584 v/v (DPPH test), 79.59 ± 3.763% (ABTS test), 2891.08 ± 270.044 µmol Fe2+ (FRAP test), 255.48 ± 26.169 µmol of Trolox (CUPRAC assay). Chlorogenic acid effectively inhibited the lipid peroxidation process in hemp and milk thistle seed oils
Spectroscopic, Thermal, Microbiological, and Antioxidant Study of Alkali Metal 2-Hydroxyphenylacetates
The structural, spectral, thermal, and biological properties of hydroxyphenylacetic acid and lithium, sodium, potassium, rubidium, and cesium 2-hydroxyphenylacetates were analyzed by means of infrared spectroscopy FT-IR, electronic absorption spectroscopy UV-VIS, nuclear magnetic resonance 1H and 13C NMR, thermogravimetric analysis (TG/DSC), and quantum-chemical calculations at B3LYP/6-311++G** level. Moreover, the antioxidant (ABTS, FRAP, and CUPRAC assays), antibacterial (against E. coli, K. aerogenes, P. fluorescens, and B. subtilis) and antifungal (against C. albicans) properties of studied compounds were measured. The effect of alkali metal ions on the structure, thermal, and biological properties of 2-hydroxyphenylacetates was discussed
Co(II) Complex of Quercetin–Spectral, Anti-/Pro-Oxidant and Cytotoxic Activity in HaCaT Cell Lines
In this study a cobalt(II) complex of quercetin was synthetized in the solid state with the general formula Co(C15H9O7)2∙2H2O. The FT-IR, elemental analysis, and UV/Vis methods were used to study the composition of the complex in a solid state and in a water solution. The anti-/pro-oxidant activity of quercetin and the Co(II) complex was studied by means of spectrophotometric DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant activity) and Trolox oxidation assays. The cytotoxicity of quercetin and Co(II)-quercetin complex in HaCat cell lines was then established
A Short Overview of the Possibilities of Using Waste from the Agri-Food Industry
The agri-food industry is a source of various substrates - plants as well as plant and animal residues or waste, which can be recycled. Determining the yield of agri-food waste processing products that can be obtained from them, as well as estimating the local availability of a given raw material allows for the selection of appropriate substrates that guarantee both their effective production and their continuous supply. The presented article includes a review of scientific reports on the acquisition of bioactive substances, substrates for the production of activated carbon and materials for use in construction from waste from the agri-food industry. Moreover, the article discusses the economic aspects of agri-food waste in terms of bioeconomy
Fe(III) and Cu(II) Complexes of Chlorogenic Acid: Spectroscopic, Thermal, Anti-/Pro-Oxidant, and Cytotoxic Studies
Complexes of chlorogenic acid (5-CQA) with copper(II) and iron(III) were synthesized in a solid state and examined by means of FT-IR, thermogravimetric, and elemental analyses. The molar stoichiometric ratios of metal:ligand for the solid forms of the complexes were established as Cu(II):L = 1:2 and Fe(III):L = 2:3 (L: 5-CQA), with the possible coordination through the carboxylate group and the hydroxyl group from the catechol moiety. In an aqueous solution at pH = 7.4, the composition of the complexes was Cu(II):L = 1:1, and Fe(III):L = 1:1 and 1:2. The Cu(II) and Fe(III) complexes with 5-CQA showed lower antioxidant properties, as estimated by the spectrophotometric methods with DPPH•, ABTS•+, and HO• radicals, than the ligand alone, whereas in the lipid peroxidation inhibition assay, the metal complexes revealed a higher antioxidant activity than 5-CQA. Cu(II) 5-CQA showed the highest pro-oxidant activity in the Trolox oxidation assays compared to the other studied compounds. The lipophilic parameters of the compounds were estimated using the HPLC method. 5-CQA and its complexes with Fe(III) and Cu(II) were not toxic to HaCaT cells in a tested concentration range of 0.15–1000 nM after a 24 h incubation time
Structure, Antioxidant Activity and Antimicrobial Study of Light Lanthanide Complexes with p-Coumaric Acid
This paper presents the results of a study of the effects of the lanthanide ions Ce3+, Pr3+, Nd3+ and Sm3+ on the electronic structure and antioxidant and biological (antimicrobial and cytotoxic) properties of p-coumaric acid (p-CAH2). Structural studies were conducted via spectroscopic methods (FTIR, ATR, UV). Thermal degradation studies of the complexes were performed. The results are presented in the form of TG, DTG and DSC curves. Antioxidant properties were determined via activity tests against DPPH, ABTS and OH radicals. The reducing ability was tested via CUPRAC assays. Minimum inhibitory concentrations (MICs) of the ligand and lanthanide complexes were determined on E. coli, B. subtilis and C. albicans microorganisms. The antimicrobial activity was also determined using the MTT assay. The results were presented as the relative cell viability of C. albicans, P. aeruginosa, E. coli and S. aureus compared to controls and expressed as percentages. In the obtained complexes in the solid phase, lanthanide ions coordinate three ligands in a bidentate chelating coordination mode through the carboxyl group of the acid. Spectroscopic analysis showed that lanthanide ions increase the aromaticity of the pi electron system of the ligand. Thermal analysis showed that the complexes are hydrated and have a higher thermal stability than the ligand. The products of thermal decomposition of the complexes are lanthanide oxides. In the aqueous phase, the metal combines with the ligand in a 1:1 molar ratio. Antioxidant activity tests showed that the complexes have a similar ability to remove free radicals. ABTS and DPPH tests showed that the complexes have twice the ability to neutralise radicals than the ligand, and a much higher ability to remove the hydroxyl radical. The abilities of the complexes and the free ligand to reduce Cu2+ ions in the CUPRAC test are at a similar level. Lanthanide complexes of p-coumaric acid are characterised by a higher antimicrobial capacity than the free ligand against Escherichia coli bacteria, Bacillus subtilis and Candida albicans fungi
Structures, Antioxidant Properties, and Antimicrobial Properties of Eu(III), Gd(III), and Dy(III) Caffeinates and <i>p</i>-Coumarates
In this study, we investigated the structures of lanthanide (Eu(III), Dy(III), and Gd(III)) complexes with p-coumaric (p-CAH2) and caffeic (CFAH3) acids using the FTIRKBr, FTIRATR, and Raman spectroscopic methods. The compositions of the solid phase caffeinates and p-coumarates were obtained on the basis of the amounts of hydrogen and carbon determined using an elemental analysis. The degree of hydration and the thermal decomposition of each compound were examined via a thermal analysis of TG, DTG, and DSC. Antioxidant spectroscopic tests were performed using the DPPH (1,1-diphenyl-2-picrylhydrazyl radical), FRAP (ferric reducing antioxidant activity), and ABTS (2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (diammonium salt radical cation) methods. The antimicrobial activity of each compound against Escherichia coli, Bacillus subtilis, and Candida albicans was investigated. The electrical properties of the liposomes which mimicked the microbial surfaces formed in the electrolyte containing the tested compounds were also investigated. The above biological properties of the obtained complexes were compared with the activities of p-CAH2 and CFAH3. The obtained data suggest that lanthanide complexes are much more thermally stable and have higher antimicrobial and antioxidant properties than the ligands (with the exception of CFAH3 in the case of antioxidant activity tests). The Gd(III) complexes revealed the highest biological activity among the studied lanthanide complexes