133 research outputs found

    Quantitative risk assessment of food borne pathogens - a modeling approach

    Get PDF

    Density of states for almost diagonal random matrices

    Full text link
    We study the density of states (DOS) for disordered systems whose spectral statistics can be described by a Gaussian ensemble of almost diagonal Hermitian random matrices. The matrices have independent random entries Hij H_{i \geq j} with small off-diagonal elements: <Hii2>1 \ll <|H_{ii}|^{2} > \sim 1 . Using the recently suggested method of a {\it virial expansion in the number of interacting energy levels} (Journ.Phys.A {\bf 36}, 8265), we calculate the leading correction to the Poissonian DOS in the cases of the Gaussian Orthogonal and Unitary Ensembles. We apply the general formula to the critical power-law banded random matrices and the unitary Moshe-Neuberger-Shapiro model and compare DOS of these models.Comment: submitted to Phys. Rev.

    Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime

    Full text link
    Power-law random banded unitary matrices (PRBUM), whose matrix elements decay in a power-law fashion, were recently proposed to model the critical statistics of the Floquet eigenstates of periodically driven quantum systems. In this work, we numerically study in detail the statistical properties of PRBUM ensembles in the delocalization-localization transition regime. In particular, implications of the delocalization-localization transition for the fractal dimension of the eigenvectors, for the distribution function of the eigenvector components, and for the nearest neighbor spacing statistics of the eigenphases are examined. On the one hand, our results further indicate that a PRBUM ensemble can serve as a unitary analog of the power-law random Hermitian matrix model for Anderson transition. On the other hand, some statistical features unseen before are found from PRBUM. For example, the dependence of the fractal dimension of the eigenvectors of PRBUM upon one ensemble parameter displays features that are quite different from that for the power-law random Hermitian matrix model. Furthermore, in the time-reversal symmetric case the nearest neighbor spacing distribution of PRBUM eigenphases is found to obey a semi-Poisson distribution for a broad range, but display an anomalous level repulsion in the absence of time-reversal symmetry.Comment: 10 pages + 13 fig

    An integrated framework of personalized medicine: from individual genomes to participatory health care

    Get PDF
    Abstract Promising research developments in both basic and applied sciences, such as genomics and participatory health care approaches, have generated widespread interest in personalized medicine among almost all scientific areas and clinicians. The term personalized medicine is, however, frequently used without defining a clear theoretical and methodological background. In addition, to date most personalized medicine approaches still lack convincing empirical evidence regarding their contribution and advantages in comparison to traditional models. Here, we propose that personalized medicine can only fulfill the promise of optimizing our health care system by an interdisciplinary and translational view that extends beyond traditional diagnostic and classification systems

    Correlated electrons in the presence of disorder

    Full text link
    Several new aspects of the subtle interplay between electronic correlations and disorder are reviewed. First, the dynamical mean-field theory (DMFT)together with the geometrically averaged ("typical") local density of states is employed to compute the ground state phase diagram of the Anderson-Hubbard model at half-filling. This non-perturbative approach is sensitive to Anderson localization on the one-particle level and hence can detect correlated metallic, Mott insulating and Anderson insulating phases and can also describe the competition between Anderson localization and antiferromagnetism. Second, we investigate the effect of binary alloy disorder on ferromagnetism in materials with ff-electrons described by the periodic Anderson model. A drastic enhancement of the Curie temperature TcT_c caused by an increase of the local ff-moments in the presence of disordered conduction electrons is discovered and explained.Comment: 17 pages, 7 figures, final version, typos corrected, references updated, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    N6-Methyladenosine Directly Regulates CD40L Expression in CD4+ T Lymphocytes

    Get PDF
    T cell activation is a highly regulated process, modulated via the expression of various immune regulatory proteins including cytokines, surface receptors and co-stimulatory proteins. N6-methyladenosine (m6A) is an RNA modification that can directly regulate RNA expression levels and it is associated with various biological processes. However, the function of m6A in T cell activation remains incompletely understood. We identify m6A as a novel regulator of the expression of the CD40 ligand (CD40L) in human CD4+ lymphocytes. Manipulation of the m6A ‘eraser’ fat mass and obesity-associated protein (FTO) and m6A ‘writer’ protein methyltransferase-like 3 (METTL3) directly affects the expression of CD40L. The m6A ‘reader’ protein YT521-B homology domain family-2 (YTHDF2) is hypothesized to be able to recognize and bind m6A specific sequences on the CD40L mRNA and promotes its degradation. This study demonstrates that CD40L expression in human primary CD4+ T lymphocytes is regulated via m6A modifications, elucidating a new regulatory mechanism in CD4+ T cell activation that could possibly be leveraged in the future to modulate T cell responses in patients with immune-related diseases
    corecore