43 research outputs found

    Structure-related bandgap of hybrid lead halide perovskites and close-packed APbX3 family of phases

    Full text link
    Metal halide perovskites APbX3 (A+ = FA+ (formamidinium), MA+ (methylammonium) or Cs+, X- = I-, Br-) are considered as prominent innovative components in nowadays perovskite solar cells. Crystallization of these materials is often complicated by the formation of various phases with the same stoichiometry but structural types deviating from perovskites such as well-known the hexagonal delta FAPbI3 polytype. Such phases are rarely placed in the focus of device engineering due to their unattractive optoelectronic properties while they are, indeed, highly important because they influence on the optoelectronic properties and efficiency of final devices. However, the total number of such phases has not been yet discovered and the complete configurational space of the polytypes and their band structures have not been studied systematically. In this work, we predicted and described all possible hexagonal polytypes of hybrid lead halides with the APbI3 composition using the group theory approach, also we analyzed theoretically the relationship between the configuration of close-packed layers in polytypes and their band gap using DFT calculations. Two main factors affecting the bandgap were found including the ratio of cubic (c) and hexagonal (h) close-packed layers and the thickness of blocks of cubic layers in the structures. We also show that the dependence of the band gap on the ratio of cubic (c) and hexagonal (h) layers in these structures are non-linear. We believe that the presence of such polytypes in the perovskite matrix might be a reason for a decrease in the charge carrier mobility and therefore it would be an obstacle for efficient charge transport causing negative consequences for the efficiency of solar cell devices

    Nanotechnology Facets of the Periodic Table of Elements

    No full text

    Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells

    No full text
    The often observed and still unexplained phenomenon of the growth of lithium peroxide crystal clusters during the discharge of Li–O2 cells is likely to happen because of self-assembling Li2O2 platelets that nucleate homogeneously right after the intermediate formation of superoxide ions by a single-electron oxygen reduction reaction (ORR). This feature limits the rechargeability of Li–O2 cells, but at the same time it can be beneficial for both capacity improvement and gain in recharge rate if a proper liquid phase mediator can be found

    Solubility of Hybrid Halide Perovskites in DMF and DMSO

    No full text
    Solution methods remain the most popular means for the fabrication of hybrid halide perovskites. However, the solubility of hybrid perovskites has not yet been quantitively investigated. In this study, we present accurate solubility data for MAPbI3, FAPbI3, MAPbBr3 and FAPbBr3 in the two most widely used solvents, DMF and DMSO, and demonstrate huge differences in the solubility behavior depending on the solution compositions. By analyzing the donor numbers of the solvents and halide anions, we rationalize the differences in the solubility behavior of hybrid perovskites with various compositions, in order to take a step forward in the search for better processing conditions of hybrid perovskites for solar cells and optoelectronics

    New Acidic Precursor and Acetone-Based Solvent for Fast Perovskite Processing via Proton-Exchange Reaction with Methylamine

    No full text
    A new solvent system for PbI2 based on HI solution in acetone with a low boiling point is proposed. High solubility of PbI2 is caused by the formation of iodoplumbate complexes, and reaches a concentration of 1.6 M. Upon its crystallization metastable solvate phases PbI2∙HI∙n{(CH3)2CO} are formed. The latter allows for their easy deposition on substrates in a form of smooth and uniform thin films by spin-coating. Through a fast acid-base reaction with a gaseous amine, the films of the intermediate phase can be completely converted to single-phase perovskite films. The developed method allows one to form smooth perovskite films with high crystallinity with a thickness up to 1 μm. Due to easy and fast processing, the developed method can be promising for perovskite technology upscaling

    Chemical Tuning of Adsorption Properties of Titanate Nanotubes

    No full text
    A conventional hydrothermal method widely used for the preparation of titania-based nanotubes still generates many unsolved questions. One of them is definitely connected with the influence of a posthydrothermal treatment of titania nanotubes on their micromorphology, structure, and adsorption characteristics. Here, it was analyzed systematically by a group of methods including nitrogen adsorption and temperature-programmed desorption of ammonia and carbon dioxide. It is proved that adsorption characteristics and the surface state of titania nanotubes correlate with a sodium content, since sodium ions act as Lewis acid sites and shield Ti4+ acid sites of the nanotubes. To obey a balance between chemical and heat treatments of the nanotubes to design their functional properties has been suggested

    Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells

    No full text
    One of the most promising among hole-conducting materials, CuSCN, was prepared for the first time in a form of porous layers for potential applications in inverted perovskite solar cells
    corecore