35 research outputs found

    Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants

    Get PDF
    YesInhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), a surface tension reducing agent, consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. The monolayer surface tension is continuously regulated by the alveolus compression and expansion and protects the alveoli from collapsing. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer and the consequences of the interactions on lung function are not well understood. Coarse-grained molecular dynamics simulations were carried out to elucidate the interactions of AuNPs with simplified LS monolayers at the nanoscale. It was observed that the interactions of AuNPs and LS components deform the monolayer structure, change the biophysical properties of LS and create pores in the monolayer, which all interfere with the normal lungs function. The results also indicate that AuNP concentrations >0.1 mol% (of AuNPs/lipids) hinder the lowering of the LS surface tension, a prerequisite of the normal breathing process. Overall, these findings could help to identify the possible consequences of airborne NPs inhalation and their contribution to the potential development of various lung diseases.University of Technology Sydney (UTS) FEIT Research Scholarship, UTS IRS (S.I.H.), 2018 Blue Sky scheme–Suvash Saha (Activity 2232368), N.S.G is supported by the Vice-Chancellor fellowship funded by QUT

    Creating an Artificial Pancreas (Semester Unknown) IPRO 308: Creating an Artificial Pancreas IPRO 308 Brochure Sp08

    Full text link
    Insulin is a hormone released by pancreatic islet cells that interacts with cells to increase their permeability to glucose. Diabetes is an illness that is becoming more prevalent around the world and is linked with either abnormal insulin production, or utilization or both in the body. Diabetes may be classified into two groups: Type 1 and Type 2 In an individual with Type 1 diabetes, the pancreatic ß cells that normally produce insulin are nonexistent as they have been destroyed due to autoimmune response. In an individual with Type 2 diabetes there is tissue-wide resistance to insulin and usually some impairment of ß cells as well. Therefore, although insulin production may be present its functionality is impaired. Type 1 diabetes is typically treated with frequent extraneous insulin injections, depending on the prevailing blood glucose levels of the individual; however, in order to determine the glucose levels individuals subject themselves to periodic finger pricks throughout the day which is often uncomfortable and stressful. Mechanical devices for insulin delivery, also known as “artificial pancreases”, are currently available in the marketplace. However, these devices are not only highly invasive and painful, but also must be sanitized frequently to prevent infections. As a result, they are inconvenient and many diabetic patients choose not to use them. The goal of IPRO 308 is to develop an automated, non-invasive artificial pancreas that will be capable of determining blood glucose levels and administering an appropriate amount of insulin into the blood stream while causing minimal discomfort to the individual.Deliverable

    Creating an Artificial Pancreas (Semester Unknown) IPRO 308: Creating an Artificial Pancreas IPRO 308 Ethics Sp08

    Full text link
    Insulin is a hormone released by pancreatic islet cells that interacts with cells to increase their permeability to glucose. Diabetes is an illness that is becoming more prevalent around the world and is linked with either abnormal insulin production, or utilization or both in the body. Diabetes may be classified into two groups: Type 1 and Type 2 In an individual with Type 1 diabetes, the pancreatic ß cells that normally produce insulin are nonexistent as they have been destroyed due to autoimmune response. In an individual with Type 2 diabetes there is tissue-wide resistance to insulin and usually some impairment of ß cells as well. Therefore, although insulin production may be present its functionality is impaired. Type 1 diabetes is typically treated with frequent extraneous insulin injections, depending on the prevailing blood glucose levels of the individual; however, in order to determine the glucose levels individuals subject themselves to periodic finger pricks throughout the day which is often uncomfortable and stressful. Mechanical devices for insulin delivery, also known as “artificial pancreases”, are currently available in the marketplace. However, these devices are not only highly invasive and painful, but also must be sanitized frequently to prevent infections. As a result, they are inconvenient and many diabetic patients choose not to use them. The goal of IPRO 308 is to develop an automated, non-invasive artificial pancreas that will be capable of determining blood glucose levels and administering an appropriate amount of insulin into the blood stream while causing minimal discomfort to the individual.Deliverable

    Creating an Artificial Pancreas (Semester Unknown) IPRO 308: Creating an Artificial Pancreas IPRO 308 Project Plan Sp08

    Full text link
    Insulin is a hormone released by pancreatic islet cells that interacts with cells to increase their permeability to glucose. Diabetes is an illness that is becoming more prevalent around the world and is linked with either abnormal insulin production, or utilization or both in the body. Diabetes may be classified into two groups: Type 1 and Type 2 In an individual with Type 1 diabetes, the pancreatic ß cells that normally produce insulin are nonexistent as they have been destroyed due to autoimmune response. In an individual with Type 2 diabetes there is tissue-wide resistance to insulin and usually some impairment of ß cells as well. Therefore, although insulin production may be present its functionality is impaired. Type 1 diabetes is typically treated with frequent extraneous insulin injections, depending on the prevailing blood glucose levels of the individual; however, in order to determine the glucose levels individuals subject themselves to periodic finger pricks throughout the day which is often uncomfortable and stressful. Mechanical devices for insulin delivery, also known as “artificial pancreases”, are currently available in the marketplace. However, these devices are not only highly invasive and painful, but also must be sanitized frequently to prevent infections. As a result, they are inconvenient and many diabetic patients choose not to use them. The goal of IPRO 308 is to develop an automated, non-invasive artificial pancreas that will be capable of determining blood glucose levels and administering an appropriate amount of insulin into the blood stream while causing minimal discomfort to the individual.Deliverable

    Creating an Artificial Pancreas (Semester Unknown) IPRO 308: Creating an Artificial Pancreas IPRO 308 MidTerm Report Sp08

    Full text link
    Insulin is a hormone released by pancreatic islet cells that interacts with cells to increase their permeability to glucose. Diabetes is an illness that is becoming more prevalent around the world and is linked with either abnormal insulin production, or utilization or both in the body. Diabetes may be classified into two groups: Type 1 and Type 2 In an individual with Type 1 diabetes, the pancreatic ß cells that normally produce insulin are nonexistent as they have been destroyed due to autoimmune response. In an individual with Type 2 diabetes there is tissue-wide resistance to insulin and usually some impairment of ß cells as well. Therefore, although insulin production may be present its functionality is impaired. Type 1 diabetes is typically treated with frequent extraneous insulin injections, depending on the prevailing blood glucose levels of the individual; however, in order to determine the glucose levels individuals subject themselves to periodic finger pricks throughout the day which is often uncomfortable and stressful. Mechanical devices for insulin delivery, also known as “artificial pancreases”, are currently available in the marketplace. However, these devices are not only highly invasive and painful, but also must be sanitized frequently to prevent infections. As a result, they are inconvenient and many diabetic patients choose not to use them. The goal of IPRO 308 is to develop an automated, non-invasive artificial pancreas that will be capable of determining blood glucose levels and administering an appropriate amount of insulin into the blood stream while causing minimal discomfort to the individual.Deliverable

    Creating an Artificial Pancreas (Semester Unknown) IPRO 308: Creating an Artificial Pancreas IPRO 308 Poster Sp08

    Full text link
    Insulin is a hormone released by pancreatic islet cells that interacts with cells to increase their permeability to glucose. Diabetes is an illness that is becoming more prevalent around the world and is linked with either abnormal insulin production, or utilization or both in the body. Diabetes may be classified into two groups: Type 1 and Type 2 In an individual with Type 1 diabetes, the pancreatic ß cells that normally produce insulin are nonexistent as they have been destroyed due to autoimmune response. In an individual with Type 2 diabetes there is tissue-wide resistance to insulin and usually some impairment of ß cells as well. Therefore, although insulin production may be present its functionality is impaired. Type 1 diabetes is typically treated with frequent extraneous insulin injections, depending on the prevailing blood glucose levels of the individual; however, in order to determine the glucose levels individuals subject themselves to periodic finger pricks throughout the day which is often uncomfortable and stressful. Mechanical devices for insulin delivery, also known as “artificial pancreases”, are currently available in the marketplace. However, these devices are not only highly invasive and painful, but also must be sanitized frequently to prevent infections. As a result, they are inconvenient and many diabetic patients choose not to use them. The goal of IPRO 308 is to develop an automated, non-invasive artificial pancreas that will be capable of determining blood glucose levels and administering an appropriate amount of insulin into the blood stream while causing minimal discomfort to the individual.Deliverable
    corecore