19,255 research outputs found
Tightening the uncertainty principle for stochastic currents
We connect two recent advances in the stochastic analysis of nonequilibrium
systems: the (loose) uncertainty principle for the currents, which states that
statistical errors are bounded by thermodynamic dissipation; and the analysis
of thermodynamic consistency of the currents in the light of symmetries.
Employing the large deviation techniques presented in [Gingrich et al., Phys.
Rev. Lett. 2016] and [Pietzonka et al., Phys. Rev. E 2016], we provide a short
proof of the loose uncertainty principle, and prove a tighter uncertainty
relation for a class of thermodynamically consistent currents . Our bound
involves a measure of partial entropy production, that we interpret as the
least amount of entropy that a system sustaining current can possibly
produce, at a given steady state. We provide a complete mathematical discussion
of quadratic bounds which allows to determine which are optimal, and finally we
argue that the relationship for the Fano factor of the entropy production rate
is the most significant
realization of the loose bound. We base our analysis both on the formalism of
diffusions, and of Markov jump processes in the light of Schnakenberg's cycle
analysis.Comment: 13 pages, 4 figure
Linear Form of Canonical Gravity
Recent work in the literature has shown that general relativity can be
formulated in terms of a jet bundle which, in local coordinates, has five
entries: local coordinates on Lorentzian space-time, tetrads, connection
one-forms, multivelocities corresponding to the tetrads and multivelocities
corresponding to the connection one-forms. The derivatives of the Lagrangian
with respect to the latter class of multivelocities give rise to a set of
multimomenta which naturally occur in the constraint equations. Interestingly,
all the constraint equations of general relativity are linear in terms of this
class of multimomenta. This construction has been then extended to complex
general relativity, where Lorentzian space-time is replaced by a
four-complex-dimensional complex-Riemannian manifold. One then finds a
holomorphic theory where the familiar constraint equations are replaced by a
set of equations linear in the holomorphic multimomenta, providing such
multimomenta vanish on a family of two-complex-dimensional surfaces. In quantum
gravity, the problem arises to quantize a real or a holomorphic theory on the
extended space where the multimomenta can be defined.Comment: 5 pages, plain-te
Essential self-adjointness in one-loop quantum cosmology
The quantization of closed cosmologies makes it necessary to study squared
Dirac operators on closed intervals and the corresponding quantum amplitudes.
This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which
corrects section
Majorana and the theoretical problem of photon-electron scattering
Relevant contributions by Majorana regarding Compton scattering off free or
bound electrons are considered in detail, where a (full quantum) generalization
of the Kramers-Heisenberg dispersion formula is derived. The role of
intermediate electronic states is appropriately pointed out in recovering the
standard Klein-Nishina formula (for free electron scattering) by making
recourse to a limpid physical scheme alternative to the (then unknown) Feynman
diagram approach. For bound electron scattering, a quantitative description of
the broadening of the Compton line was obtained for the first time by
introducing a finite mean life for the excited state of the electron system.
Finally, a generalization aimed to describe Compton scattering assisted by a
non-vanishing applied magnetic field is as well considered, revealing its
relevance for present day research.Comment: latex, amsart, 10 pages, 1 figur
Singularity Theory in Classical Cosmology
This paper compares recent approaches appearing in the literature on the
singularity problem for space-times with nonvanishing torsion.Comment: 4 pages, plain-tex, published in Nuovo Cimento B, volume 107, pages
849-851, year 199
Doubly Charmed Tetraquarks in B_c and Xi_bc Decays
The phenomenology of the so-called X, Y and Z hadronic resonances is hard to
reconcile with standard charmonium or bottomonium interpretations. It has been
suggested that some of these new hadrons can possibly be described as tightly
bound tetraquark states and/or as loosely bound two-meson molecules. In the
present paper we focus on the hypothetical existence of flavored, doubly
charmed, tetraquarks. Such states might also carry double electric charge, and
in this case, if discovered, they could univocally be interpreted in terms of
compact tetraquarks. Flavored tetraquarks are also amenable to lattice studies
as their interpolating operators do not overlap with ordinary meson ones. We
show that doubly charmed tetraquarks could significantly be produced at LHC
from B_c or Xi_bc heavy baryons.Comment: 12 pages, 8 figures. Comments and references added. Version to appear
in Phys.Rev.
One-Loop Effective Action for Euclidean Maxwell Theory on Manifolds with Boundary
This paper studies the one-loop effective action for Euclidean Maxwell theory
about flat four-space bounded by one three-sphere, or two concentric
three-spheres. The analysis relies on Faddeev-Popov formalism and
-function regularization, and the Lorentz gauge-averaging term is used
with magnetic boundary conditions. The contributions of transverse,
longitudinal and normal modes of the electromagnetic potential, jointly with
ghost modes, are derived in detail. The most difficult part of the analysis
consists in the eigenvalue condition given by the determinant of a
or matrix for longitudinal and normal modes. It is shown that the
former splits into a sum of Dirichlet and Robin contributions, plus a simpler
term. This is the quantum cosmological case. In the latter case, however, when
magnetic boundary conditions are imposed on two bounding three-spheres, the
determinant is more involved. Nevertheless, it is evaluated explicitly as well.
The whole analysis provides the building block for studying the one-loop
effective action in covariant gauges, on manifolds with boundary. The final
result differs from the value obtained when only transverse modes are
quantized, or when noncovariant gauges are used.Comment: 25 pages, Revte
On the Zero-Point Energy of a Conducting Spherical Shell
The zero-point energy of a conducting spherical shell is evaluated by
imposing boundary conditions on the potential, and on the ghost fields. The
scheme requires that temporal and tangential components of perturbations of the
potential should vanish at the boundary, jointly with the gauge-averaging
functional, first chosen of the Lorenz type. Gauge invariance of such boundary
conditions is then obtained provided that the ghost fields vanish at the
boundary. Normal and longitudinal modes of the potential obey an entangled
system of eigenvalue equations, whose solution is a linear combination of
Bessel functions under the above assumptions, and with the help of the Feynman
choice for a dimensionless gauge parameter. Interestingly, ghost modes cancel
exactly the contribution to the Casimir energy resulting from transverse and
temporal modes of the potential, jointly with the decoupled normal mode of the
potential. Moreover, normal and longitudinal components of the potential for
the interior and the exterior problem give a result in complete agreement with
the one first found by Boyer, who studied instead boundary conditions involving
TE and TM modes of the electromagnetic field. The coupled eigenvalue equations
for perturbative modes of the potential are also analyzed in the axial gauge,
and for arbitrary values of the gauge parameter. The set of modes which
contribute to the Casimir energy is then drastically changed, and comparison
with the case of a flat boundary sheds some light on the key features of the
Casimir energy in non-covariant gauges.Comment: 29 pages, Revtex, revised version. In this last version, a new
section has been added, devoted to the zero-point energy of a conducting
spherical shell in the axial gauge. A second appendix has also been include
Euclidean Maxwell Theory in the Presence of Boundaries. II
Zeta-function regularization is applied to complete a recent analysis of the
quantized electromagnetic field in the presence of boundaries. The quantum
theory is studied by setting to zero on the boundary the magnetic field, the
gauge-averaging functional and hence the Faddeev-Popov ghost field. Electric
boundary conditions are also studied. On considering two gauge functionals
which involve covariant derivatives of the 4-vector potential, a series of
detailed calculations shows that, in the case of flat Euclidean 4-space bounded
by two concentric 3-spheres, one-loop quantum amplitudes are gauge independent
and their mode-by-mode evaluation agrees with the covariant formulae for such
amplitudes and coincides for magnetic or electric boundary conditions. By
contrast, if a single 3-sphere boundary is studied, one finds some
inconsistencies, i.e. gauge dependence of the amplitudes.Comment: 24 pages, plain-tex, recently appearing in Classical and Quantum
Gravity, volume 11, pages 2939-2950, December 1994. The authors apologize for
the delay in circulating the file, due to technical problems now fixe
One-Loop Effective Action on the Four-Ball
This paper applies -function regularization to evaluate the 1-loop
effective action for scalar field theories and Euclidean Maxwell theory in the
presence of boundaries. After a comparison of two techniques developed in the
recent literature, vacuum Maxwell theory is studied and the contribution of all
perturbative modes to is derived: transverse, longitudinal and
normal modes of the electromagnetic potential, jointly with ghost modes. The
analysis is performed on imposing magnetic boundary conditions, when the
Faddeev-Popov Euclidean action contains the particular gauge-averaging term
which leads to a complete decoupling of all perturbative modes. It is shown
that there is no cancellation of the contributions to resulting
from longitudinal, normal and ghost modes.Comment: 25 pages, plain Te
- âŠ