3 research outputs found

    Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluation

    Get PDF
    The demand for cost-efficient manufacturing of complex metal components has driven research for metal Additive Manufacturing (AM) such as Wire + Arc Additive Manufacturing (WAAM). WAAM enables automated, time and material-efficient manufacturing of metal parts. To strengthen these benefits, the demand for robotically deployed in-process Non-Destructive Evaluation (NDE) has risen, aiming to replace current manually deployed inspection techniques after completion of the part. This work presents a synchronized multi-robot WAAM & NDE cell aiming to achieve 1) defect detection in-process, 2) enable possible in-process repair and 3) prevent costly scrappage or rework of completed defective builds. The deployment of the NDE during a deposition process is achieved through real-time position control of the robots based on sensor input. A novel high-temperature capable, dry-coupled phased array ultrasound transducer (PAUT) roller-probe device is used for the NDE inspection. The dry-coupled sensor is tailored for coupling with an as-built high-temperature WAAM surface at an applied force and speed. The demonstration of the novel ultrasound in-process defect detection approach, presented in this paper, is performed on a titanium WAAM straight sample containing intentionally embedded tungsten tube reflectors with an internal diameter of 1.0 mm. The ultrasound data is acquired after a pre-specified layer, in-process, employing the Full Matrix Capture (FMC) technique for subsequent post-processing using the adaptive Total Focusing Method (TFM) imaging algorithm assisted by a surface reconstruction algorithm based on the Synthetic Aperture Focusing Technique (SAFT). The presented results show a sufficient Signal to Noise Ratio. Therefore, a potential for early defect detection is achieved, directly strengthening the benefits of the AM process by enabling a possible in-process repair

    In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approaches

    Get PDF
    Metal additive manufacturing is rapidly gaining popularity and interest from sectors aiming to produce larger-scale high-value components cost-effectively. To ensure each component is leaving the fabrication cell defect-free, it is highly desirable to inspect each layer or selected volume of the build. This is a significant challenge, given that conventional non-destructive evaluation (NDE) is a post-manufacturing operation. The opportunity exists in the development of novel flexible automated manufacturing systems aiming to merge deposition and inspection. Hence, enabling defect detection at the point of the creation allows subsequent rapid repair or reduction in scrappage. In this work, the authors present research from one such multi-robot cell, where a directed energy deposition process called wire + arc additive manufacture is used to build components while novel in-process ultrasound and eddy-current approaches are deployed to inspect a component with artificially embedded reflectors. The outcome of this work demonstrates a promising ability to merge manufacturing and NDE into a single process and hence, strengthen the overall benefits of metal additive manufacturing fields

    In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe

    Get PDF
    Additive Manufacturing plays a significant role in Industry 4.0, where the demand for smart factories capable of fabricating high-quality customized products cost-efficiently exists. Wire + Arc Additive Manufacturing (WAAM) is one such technique that enables automated, time and material-efficient production of high-value geometrically complex metal parts. To strengthen the benefits of WAAM, the demand for robotically deployed in-process Non-Destructive Evaluation (NDE) has risen, aiming to replace manually deployed inspection techniques deployed after the full part completion. This novel research presents a synchronized multi-robot WAAM deposition & ultrasound NDE cell aiming to achieve defect detection in-process, enable possible in-process repair, and prevent costly scrappage or rework. The full external control NDE approach is achieved by the real-time force/torque sensor-enabled adaptive kinematics control package. A novel high-temperature dry-coupled ultrasound roller-probe device is employed to assess the structural integrity of freshly deposited layers of WAAM components. The WAAM roller-probe is tailored to facilitate the in-process inspection by dry-coupling coupling with the hot (< 350 °C) non-flat surface of WAAM using a flexible outer silicone tyre and solid core delay-line at speed and at high coupling force [1]. The demonstration of the in-process inspection approach is performed on hot as-built Ti-6Al-4V WAAM samples. The defect detection capabilities are assessed on artificially produced defects embedded inside these WAAM builds. In this work the defect detection is accomplished using 1) layer-specific beamforming focusing imaging and 2) volumetric inspection using post-processing algorithms applied to collected Full Raw Data e.g. Full Matrix Capture. The analysis and results comparison show promising results with a sufficient Signal-to-Noise ratio (< 10 dB). Hence, the research directly supports the industrial benefits of the WAAM process intending to achieve the automated production of first-time-right parts
    corecore