442 research outputs found
Studies of Bacterial Branching Growth using Reaction-Diffusion Models for Colonial Development
Various bacterial strains exhibit colonial branching patterns during growth
on poor substrates. These patterns reflect bacterial cooperative
self-organization and cybernetic processes of communication, regulation and
control employed during colonial development. One method of modeling is the
continuous, or coupled reaction-diffusion approach, in which continuous time
evolution equations describe the bacterial density and the concentration of the
relevant chemical fields. In the context of branching growth, this idea has
been pursued by a number of groups. We present an additional model which
includes a lubrication fluid excreted by the bacteria. We also add fields of
chemotactic agents to the other models. We then present a critique of this
whole enterprise with focus on the models' potential for revealing new
biological features.Comment: 1 latex file, 40 gif/jpeg files (compressed into tar-gzip). Physica
A, in pres
Modeling branching and chiral colonial patterning of lubricating bacteria
In nature, microorganisms must often cope with hostile environmental
conditions. To do so they have developed sophisticated cooperative behavior and
intricate communication capabilities, such as: direct cell-cell physical
interactions via extra-membrane polymers, collective production of
extracellular "wetting" fluid for movement on hard surfaces, long range
chemical signaling such as quorum sensing and chemotactic (bias of movement
according to gradient of chemical agent) signaling, collective activation and
deactivation of genes and even exchange of genetic material. Utilizing these
capabilities, the colonies develop complex spatio-temporal patterns in response
to adverse growth conditions. We present a wealth of branching and chiral
patterns formed during colonial development of lubricating bacteria (bacteria
which produce a wetting layer of fluid for their movement). Invoking ideas from
pattern formation in non-living systems and using ``generic'' modeling we are
able to reveal novel survival strategies which account for the salient features
of the evolved patterns. Using the models, we demonstrate how communication
leads to self-organization via cooperative behavior of the cells. In this
regard, pattern formation in microorganisms can be viewed as the result of the
exchange of information between the micro-level (the individual cells) and the
macro-level (the colony). We mainly review known results, but include a new
model of chiral growth, which enables us to study the effect of chemotactic
signaling on the chiral growth. We also introduce a measure for weak chirality
and use this measure to compare the results of model simulations with
experimental observations.Comment: 50 pages, 24 images in 44 GIF/JPEG files, Proceedings of IMA
workshop: Pattern Formation and Morphogenesis (1998
Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells
<p>Abstract</p> <p>Background</p> <p>Swarming motility allows microorganisms to move rapidly over surfaces. The Gram-positive bacterium <it>Paenibacillus vortex </it>exhibits advanced cooperative motility on agar plates resulting in intricate colonial patterns with geometries that are highly sensitive to the environment. The cellular mechanisms that underpin the complex multicellular organization of such a simple organism are not well understood.</p> <p>Results</p> <p>Swarming by <it>P. vortex </it>was studied by real-time light microscopy, by <it>in situ </it>scanning electron microscopy and by tracking the spread of antibiotic-resistant cells within antibiotic-sensitive colonies. When swarming, <it>P. vortex </it>was found to be peritrichously flagellated. Swarming by the curved cells of <it>P. vortex </it>occurred on an extremely wide range of media and agar concentrations (0.3 to 2.2% w/v). At high agar concentrations (> 1% w/v) rotating colonies formed that could be detached from the main mass of cells by withdrawal of cells into the latter. On lower percentage agars, cells moved in an extended network composed of interconnected "snakes" with short-term collision avoidance and sensitivity to extracts from swarming cells. <it>P. vortex </it>formed single Petri dish-wide "supercolonies" with a colony-wide exchange of motile cells. Swarming cells were coupled by rapidly forming, reversible and non-rigid connections to form a loose raft, apparently connected <it>via </it>flagella. Inhibitors of swarming (<it>p</it>-Nitrophenylglycerol and Congo Red) were identified. Mitomycin C was used to trigger filamentation without inhibiting growth or swarming; this facilitated dissection of the detail of swarming. Mitomycin C treatment resulted in malcoordinated swarming and abortive side branch formation and a strong tendency by a subpopulation of the cells to form minimal rotating aggregates of only a few cells.</p> <p>Conclusion</p> <p><it>P. vortex </it>creates complex macroscopic colonies within which there is considerable reflux and movement and interaction of cells. Cell shape, flagellation, the aversion of cell masses to fuse and temporary connections between proximate cells to form rafts were all features of the swarming and rotation of cell aggregates. Vigorous vortex formation was social, i.e. required > 1 cell. This is the first detailed examination of the swarming behaviour of this bacterium at the cellular level.</p
Counting Highly Cited Papers for University Research Assessment: Conceptual and Technical Issues
A Kuhnian approach to research assessment requires us to consider that the important scientific breakthroughs that drive scientific progress are infrequent and that the progress of science does not depend on normal research. Consequently, indicators of research performance based on the total number of papers do not accurately measure scientific progress. Similarly, those universities with the best reputations in terms of scientific progress differ widely from other universities in terms of the scale of investments made in research and in the higher concentrations of outstanding scientists present, but
less so in terms of the total number of papers or citations. This study argues that indicators for the 1% high-citation tail of the citation distribution reveal the contribution of universities to the progress of science and provide quantifiable justification for the large investments in research made by elite research universities. In this tail, which follows a power low,
the number of the less frequent and highly cited important breakthroughs can be predicted from the frequencies of papers in the upper part of the tail. This study quantifies the false impression of excellence produced by multinational papers, and by other types of papers that do not contribute to the progress of science. Many of these papers are concentrated in and dominate lists of highly cited papers, especially in lower-ranked universities. The h-index obscures the differences between higher- and lower-ranked universities because the proportion of h-core papers in the 1% high-citation tail is not proportional to the value of the h-index
Self-Wiring of Neural Networks
In order to form the intricate network of synaptic connections in the brain,
the growth cones migrate through the embryonic environment to their targets
using chemical communication. As a first step to study self-wiring, 2D model
systems of neurons have been used. We present a simple model to reproduce the
salient features of the 2D systems. The model incorporates random walkers
representing the growth cones, which migrate in response to chemotaxis
substances extracted by the soma and communicate with each other and with the
soma by means of attractive chemotactic "feedback".Comment: 10 pages, 10 PostScript figures. Originally submitted to the
neuro-dev archive which was never publicly announced (was 9710001
- …