65 research outputs found

    Magnetic field dependence of the oxygen isotope effect on the magnetic penetration depth in hole-doped cuprate superconductors

    Full text link
    The magnetic field dependence of the oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth \lambda_{ab} was studied in the hole-doped high-temperature cuprate superconductors YBa_2Cu_4O_8, Y_0.8Pr_0.2Ba_2Cu_3O_7-\delta, and Y_0.7Pr_0.3Ba_2Cu_3O_7-\delta. It was found that \lambda_ab for the ^{16}O substituted samples increases stronger with increasing magnetic field than for the ^{18}O ones. The OIE on \lambda_ab decreases by more than a factor of two with increasing magnetic field from \mu_0H=0.2 T to \mu_0H=0.6 T. This effect can be explained by the isotope dependence of the in-plane charge carrier mass m^\ast_{ab}.Comment: 4 pages, two figure

    Formation of hydrogen impurity states in silicon and insulators at low implantation energies

    Full text link
    The formation of hydrogen-like muonium (Mu) has been studied as a function of implantation energy in intrinsic Si, thin films of condensed van der Waals gases (N2, Ne, Ar, Xe), fused and crystalline quartz and sapphire. By varying the initial energy of positive muons (mu+) between 1 and 30 keV the number of electron-hole pairs generated in the ionization track of the mu+ can be tuned between a few and several thousand. The results show the strong suppression of the formation of those Mu states that depend on the availability of excess electrons. This indicates, that the role of H-impurity states in determining electric properties of semiconductors and insulators depends on the way how atomic H is introduced into the material.Comment: 4 pages, 4 enscapulated postscript figures, uses revtex4 twocolumn style to be published in Physical Review Letter

    Muon-Spin-Rotation Measurements of the Penetration Depth in the Infinite-Layer Electron-Doped Cuprate Superconductor Sr0.9La0.1CuO2

    Full text link
    Muon spin rotation (mSR) measurements of the in-plane penetration depth lambda_ab have been performed in the electron-doped infinite layer high-Tc superconductor (HTS) Sr0.9La0.1CuO2. Absence of the magnetic rare-earth ions in this compound allowed to measure for the first time the absolute value of lambda_ab(0) in electron-doped HTS using mSR. We found lambda_ab(0)=116(2) nm. The zero-temperature depolarization rate sigma(0)?1/lambda_ab(0)^2=4.6(1) MHz is more than four times higher than expected from the Uemura line. Therefore this electron-doped HTS does not follow the Uemura relation found for hole-doped HTS.Comment: to be published in Physical Review Letter

    Direct observation of the oxygen isotope effect on the in-plane magnetic field penetration depth in optimally doped YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    We report the first direct observation of the oxygen-isotope (16^{16}O/18^{18}O) effect on the in-plane penetration depth λab\lambda_{ab} in a nearly optimally doped YBa2_2Cu3_3O7−δ_{7-\delta} film using the novel low-energy muon-spin rotation technique. Spin polarized low energy muons are implanted in the film at a known depth zz beneath the surface and precess in the local magnetic field B(z)B(z). This feature allows us to measure directly the profile B(z)B(z) of the magnetic field inside the superconducting film in the Meissner state and to make a model independent determination of λab\lambda_{ab}. A substantial isotope shift Δλab/λab=2.8(7)\Delta\lambda_{ab}/\lambda_{ab}=2.8(7)% at 4 K is observed, implying that the in-plane effective supercarrier mass mab∗m_{ab}^\ast is oxygen-isotope dependent with Δmab∗/mab∗=5.5(1.4)\Delta m_{ab}^\ast/m_{ab}^\ast = 5.5(1.4)%.Comment: 4 pages, 2 figure

    Landau diamagnetism of a weakly bound muonium atom

    Get PDF
    The ionization with temperature of weakly bound muonium atoms in undoped CdS has been studied using the technique of muon spin relaxation in a transverse magnetic field of 10 mT. For this atom the Coulomb binding energy between the muon and the electron is sufficiently small that the Landau diamagnetic term determines the magnetic behavior of the system: due to the diamagnetic interaction the muon precession in a transverse magnetic field exhibits a frequency shift of approximately 0.5% around the ionization temperature.http://www.sciencedirect.com/science/article/B6TVM-448FTXD-1/1/e6a2420c40c0e5e534a3e5d0f052d41

    Anisotropy and internal field distribution of MgB2 in the mixed state at low temperatures

    Get PDF
    Magnetization and muon spin relaxation on MgB2 were measured as a function of field at 2 K. Both indicate an inverse-squared penetration depth strongly decreasing with increasing field H below about 1 T. Magnetization also suggests the anisotropy of the penetration depth to increase with increasing H, interpolating between a low Hc1 and a high Hc2 anisotropy. Torque vs angle measurements are in agreement with this finding, while also ruling out drastic differences between the mixed state anisotropies of the two basic length scales penetration depth and coherence length.Comment: 4 pages, 4 figure

    Study of the magnetic penetration depth in RbOs_2O_6

    Full text link
    Measurements of the magnetic field penetration depth \lambda in the pyrochlore superconductor RbOs_2O_6 (T_c\simeq6.3 K) were carried out by means of the muon-spin-rotation (\muSR) technique. At low temperatures \lambda^{-2}(T) saturates and becomes constant below T\simeq 0.2T_c, in agreement with what is expected for weak-coupled s-wave BCS superconductors. The value of \lambda at T=0 was found to be in the range of 250 nm to 300 nm. \muSR and equilibrium magnetization measurements both reveal that at low temperatures λ\lambda is almost (at the level of 10%) independent of the applied magnetic field. This result suggests that the superconducting energy gap in RbOs_2O_6 is isotropic.Comment: 8 pages, 9 figure

    Pressure effects on the transition temperature and the magnetic field penetration depth in the pyrochlore superconductor RbOs_2O_6

    Full text link
    We report magnetization measurements under high hydrostatic pressure in the newly discovered pyrochlore superconductor RbOs_2O_6 (T_c\simeq6.3K at p=0). A pronounced and {\it positive} pressure effect (PE) on T_c with dT_c/dp =0.090(1)K/kbar was observed, whereas no PE on the magnetic penetration depth \lambda was detected. The relative pressure shift of T_c [ dlnT_c/dp \simeq 1.5%/kbar] is comparable with the highest values obtained for highly underdoped high-temperature cuprate superconductors. Our results suggest that RbOs_2O_6 is an adiabatic BCS-type superconductor.Comment: 11 pages, 4 figure
    • …
    corecore