15 research outputs found

    Perspective: plasticity, the enemy of the good

    No full text
    Plasticity is an important feature of modern cancer research. However, the level at which we should consider it remains an open question. Such debate is not new in the field of cancer and can be exemplified by the different models explaining carcinogenesis. Those models mostly explain cell transformation through the deregulation of the internal circuitry. In the last years, those models dramatically increased our knowledge and led to a series of short-term successes in terms of therapeutics. However, cancer drug resistance inevitably arises. Recently, studies on the so-called tumor microenvironment enriched the cell-centered perspective but it also enlarged the complexity of cancer etiology in particular for advanced diseases. Here, we suggest that the plastic and multi-sites specific nature of cancer combined with our incapacity to promise cure should push towards a new perspective where early clinical actions, instead of late ones, should be heralded as the priority of cancer research and care

    Down-Regulation of DNA Topoisomerase IIα Leads to Prolonged Cell Cycle Transit in G 2

    No full text

    Antimicrobial Oligophenalenone Dimers from the Soil Fungus Talaromyces stipitatus

    No full text
    International audienceNew polyketide-derived oligophenalenone dimers, 9a-epi-bacillisporin E (1) and bacillisporins F–H (2–5), along with the known bacillisporin A (6), were isolated from the fungus Talaromyces stipitatus. Their structures and absolute configurations were determined on the basis of spectroscopic analyses, electronic circular dichroism, and GIAO NMR shift calculation followed by DP4 analysis. The antimicrobial activity of these compounds was evaluated against a panel of human pathogenic bacteria. Among them, bacillisporin H (5) exhibited antimicrobial activity together with modest cytotoxicity against HeLa cells

    Int. J. Oncol.

    No full text
    Irinotecan is a major anticancer agent specifically targeting DNA topoisomerase I. Its cytotoxicity is mediated via a two-step process involving accumulation of reversible DNA‑topoisomerase I complexes associated with transient DNA single-strand breaks which subsequently are converted into permanent DNA double-strand breaks by the replication fork during S phase. Irinotecan may be selectively active for treatment of colorectal cancers that show microsatellite instability (MSI) due to deficiencies in mismatch repair enzymes, compared to tumors that are microsatellite stable but show chromosome instability (CIN). Although the clinical activity of irinotecan is principally limited by acquired drug resistance, surprisingly little is known about the influence of prolonged irinotecan exposure on the cell cycle dynamics. We have developed two colon cancer cell lines resistant to SN-38, the active metabolite of irinotecan, one derived from HT-29 (CIN), the other from HCT-116 (MSI). We here show that besides classical resistance mechanisms, SN-38 resistance is accompanied by an increased generation doubling time, a decreased S phase fraction and an increased G2 fraction in vitro as in tumor xenografts for both CIN and MSI models. As a consequence, SN-38-resistant cells and tumors show cross-resistance to the S-phase selective agent 5-fluorouracil. The resistance is accompanied by increased basal levels of γ-H2AX and phospho-Chk2 without notable changes in the levels of phospho-Chk1. Taken together, our results show that prolonged irinotecan exposure is accompanied by stable modifications of cell cycle dynamics which could have profound impact on tumor sensitivity to a wide range of antitumor agents and may influence tumor progression in patients

    BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder

    No full text
    <p>Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials.</p

    Antimicrobial Oligophenalenone Dimers from the Soil Fungus <i>Talaromyces stipitatus</i>

    No full text
    New polyketide-derived oligophenalenone dimers, 9a-<i>epi</i>-bacillisporin E (<b>1</b>) and bacillisporins F–H (<b>2</b>–<b>5</b>), along with the known bacillisporin A (<b>6</b>), were isolated from the fungus <i>Talaromyces stipitatus</i>. Their structures and absolute configurations were determined on the basis of spectroscopic analyses, electronic circular dichroism, and GIAO NMR shift calculation followed by DP4 analysis. The antimicrobial activity of these compounds was evaluated against a panel of human pathogenic bacteria. Among them, bacillisporin H (<b>5</b>) exhibited antimicrobial activity together with modest cytotoxicity against HeLa cells

    Mitosis-specific MPM-2 phosphorylation of DNA topoisomerase IIα is regulated directly by protein phosphatase 2A

    No full text
    Recent results suggest a role for topoIIα (topoisomerase IIα) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIα was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIα is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIα with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIα, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIα. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes

    The C-Terminal Acidic Tail Modulates the Anticancer Properties of HMGB1

    No full text
    Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1
    corecore