770 research outputs found
A Waveguide for Bose-Einstein Condensates
We report on the creation of Bose-Einstein condensates of Rb in a
specially designed hybrid, dipole and magnetic trap. This trap naturally allows
the coherent transfer of matter waves into a pure dipole potential waveguide
based on a doughnut beam. Specifically, we present studies of the coherence of
the ensemble in the hybrid trap and during the evolution in the waveguide by
means of an autocorrelation interferometer scheme. By monitoring the expansion
of the ensemble in the waveguide we observe a mean field dominated acceleration
on a much longer time scale than in the free 3D expansion. Both the
autocorrelation interference and the pure expansion measurements are in
excellent agreement with theoretical predictions of the ensemble dynamics
Microoptical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits
We experimentally demonstrate novel structures for the realisation of
registers of atomic qubits: We trap neutral atoms in one and two-dimensional
arrays of far-detuned dipole traps obtained by focusing a red-detuned laser
beam with a microfabricated array of microlenses. We are able to selectively
address individual trap sites due to their large lateral separation of 125 mu
m. We initialize and read out different internal states for the individual
sites. We also create two interleaved sets of trap arrays with adjustable
separation, as required for many proposed implementations of quantum gate
operations
Interaction-free measurements by quantum Zeno stabilisation of ultracold atoms
Quantum mechanics predicts that our physical reality is influenced by events
that can potentially happen but factually do not occur. Interaction-free
measurements (IFMs) exploit this counterintuitive influence to detect the
presence of an object without requiring any interaction with it. Here we
propose and realize an IFM concept based on an unstable many-particle system.
In our experiments, we employ an ultracold gas in an unstable spin
configuration which can undergo a rapid decay. The object - realized by a laser
beam - prevents this decay due to the indirect quantum Zeno effect and thus,
its presence can be detected without interacting with a single atom. Contrary
to existing proposals, our IFM does not require single-particle sources and is
only weakly affected by losses and decoherence. We demonstrate confidence
levels of 90%, well beyond previous optical experiments.Comment: manuscript with 5 figures, 3 supplementary figure, 1 supplementary
not
KRb Feshbach Resonances: Modeling the interatomic potential
We have observed 28 heteronuclear Feshbach resonances in 10 spin combinations
of the hyperfine ground states of a 40K 87Rb mixture. The measurements were
performed by observing the loss rates from an atomic mixture at magnetic fields
between 0 and 700 G. This data was used to significantly refine an interatomic
potential derived from molecular spectroscopy, yielding a highly consistent
model of the KRb interaction. Thus, the measured resonances can be assigned to
the corresponding molecular states. In addition, this potential allows for an
accurate calculation of the energy differences between highly excited levels
and the rovibrational ground level. This information is of particular relevance
for the formation of deeply bound heteronuclear molecules. Finally, the model
is used to predict Feshbach resonances in mixtures of 87Rb combined with 39K or
41K.Comment: 4 pages, 3 figure
Spontaneous breaking of spatial and spin symmetry in spinor condensates
Parametric amplification of quantum fluctuations constitutes a fundamental
mechanism for spontaneous symmetry breaking. In our experiments, a spinor
condensate acts as a parametric amplifier of spin modes, resulting in a twofold
spontaneous breaking of spatial and spin symmetry in the amplified clouds. Our
experiments permit a precise analysis of the amplification in specific spatial
Bessel-like modes, allowing for the detailed understanding of the double
symmetry breaking. On resonances that create vortex-antivortex superpositions,
we show that the cylindrical spatial symmetry is spontaneously broken, but
phase squeezing prevents spin-symmetry breaking. If, however, nondegenerate
spin modes contribute to the amplification, quantum interferences lead to
spin-dependent density profiles and hence spontaneously-formed patterns in the
longitudinal magnetization.Comment: 5 pages, 4 figure
- …