34 research outputs found

    Meridional variations of Sea Surface Temperature and Wind over Southern Sea of Java and Its Surroundings

    Get PDF
    Sea surface temperature (SST) plays an important role in controlling the ocean’s heat content and regulating climate. The seasonal characteristics of SST and wind speed and their correlation in the southern Java are investigated using satellite observations. The method use in this study is averaging hourly into monthly data for SST and wind speed during 20 years observation for period of 2000-2019, and representing it in the form of descriptive monthly and seasonally. The detailed correlation research was focused on the (0-5)°S, (5-10)°S, and (10-15)°S. The results show that SST reached its peak in August, while wind speed reached its minimum in August. The difference in SST (wind speed) for climatological condition lower (higher) in MJJASO, and the magnitude is more fluctuating in latitude average rather than in NDJFMA. The significant results of the study describe meridional variation in SST and wind between the northern (Karimata Strait), central (Java Sea), and southern (Indian Ocean) regions. In this case, the Indian Ocean region near south of Java has the highest correlation between SST and wind for both of dry and rainy season compared to other areas

    Propagation Characteristics of Madden Julian Oscillation in the Indonesian Maritime Continent: Case Studies for 2020-2022

    Get PDF
    Madden-Julian Oscillation (MJO) can affect weather and climate variability in the Indonesian Maritime Continent. MJO propagation is not always the same, previous research has classified MJO into 4 categories: slow, fast, stand, and jump. The objective of this study is to investigate the differences in MJO propagation and the factors that impact it. Daily data for variables such as Outgoing Longwave Radiation (OLR), zonal wind, and sea surface temperature are utilized in this research. The collected data is processed using composite methods based on the 8 MJO phases, with a specific focus on the years 2020, 2021, and 2022. The research findings suggest that warm sea surface temperatures in the Pacific Ocean and zonal winds dominated by Kelvin waves are favorable for MJO propagation. Conversely, cooling sea surface temperatures in the Pacific Ocean and zonal winds dominated by equatorial Rossby waves can hinder MJO propagation. Future researchers are expected to examine the impact of MJO propagation during extreme rainfall occurrences in several regions of Indonesia, as well as the application of machine learning and deep learning methods to predict MJO propagation in the future

    bekerja sebagai perawat

    Full text link
    vi, 79 hlm.; 23 cm

    Bekerja sebagai Perawat

    Full text link
    vii; 80 hlm; ill; 15 x 23 c

    Perbedaan Fase Curah Hujan dan Angin Monsun di Indonesia Berdasarkan Data Satelit TRMM

    Full text link
    This research described phenomenon between wind reversal and surface rain which wererelated to pre-monsoon over Indonesia Maritime Continent (IMC). We used a ten-years dataof TRMM (Tropical Rainfal Measuring Mission) 2A25 version 6 data namely monthly nearsurface rain and zonal wind of NCEP-NCAR (National Center for EnvironmentalPrediction/National Center for Atmospheric Research) Reanalysis I, from 1998 to 2007. Theresult showed there were different phase between wind and surface rain due to pre-monsoonof dry season. According to wind data, pre-monsoon of dry season occurred in May, whichwas showed by strong and homogeneous of easterly (3-6 m/sec) over monsoon area of IMC(5-10 S, 90-150E). Transition season was showed by weak easterly (1 m/sec) occurred inApril and November. Following to surface rain data, pre-monsoon of dry season occurred inJune, which was showed by rain intensity less than treshold value (0.21 mm/hr). Transitionseason occurred in May and November, when rain intensity were 0.21 millimeter/day.Thereby, phase different between wind and rain was one month for defined premonsoon ofdry season. It was because Australian monsoon in April influenced to decrease rain intensitywhich occurred over IMC one month later (May). Whereas, pre-monsoon of rainy seasonaccording to rain surface data, occurred in November, which rain intensity reached more than0.21 mm/hr. According to wind data, pre-monsoon of rainy season occurred in December, wasdescribed by strong westerly (2-6 m/sec). So there was no phase different between wind andrain to defined pre-monsoon of rainy season over IMC.Hal.221-23

    MEKANISME HUJAN HARIAN DI SUMATERA

    Full text link
    RINGKASAN Makalah ini mengulas hasil penelitian mengenai mekanisme terjadinya curah hujan harian di Sumatera yang telah dilakukan oleh Mori et.al. 2004 dan Sakura et.al. 2005. Penjelasan mengenai mekanisme curah hujan harian dipaparkan dalam bentuk skema. Skema mekanisme curah hujan harian tersebut dibuat dari penelitian spesifik curah hujan di Sumatera menggunakan data curah hujan dari satelit Tropical Rainfall Measuring Mission (TRMM) dan data awan satelit Geostationary Meteorological Satellite (GMS). Hasil penelitian menunjukkan, puncak curah hujan mengalami migrasi dari lautan menuju daratan yang berkaitan dengan angin darat dan angin laut (land-sea breeze). Pada siang hingga malam hari terjadi angin laut, sehingga terbentuk konveksi dan hujan di atas wilayah pesisir yang selanjutnya bermigrasi menuju wilayah pegunungan dan dataran rendah. Sebaliknya, pada malam hingga pagi hari terjadi angin darat yang berpengaruh menggerakkan kembali awan-awan konvektif di atas daratan menuju lautan. Adapun karakteristik hujan harian di pesisir merupakan hujan dini hari (early morning rain), di daratan merupakan hujan sore hari (evening rain), dan di lautan merupakan hujan pagi hari (morning rain). Lebih dari 70 persen hujan yang terjadi di atas Sumatera adalah merupakan hujan konvektif. Hujan konvektif terbesar terjadi di daratan sedangkan terkecil di lautan. Variasi hujan di atas lautan sangat kecil atau cenderung tetap.Hal.86-94:ilus.; 30 c

    Konvergensi Horisontal Pada Kasus Hujan Lebat Di Jakarta Berdasarkan Model Cosmo (Horizontal Convergence In Jakarta Heavy Rainfall Case Based On Cosmo Model)

    Full text link
    Kejadian hujan lebat di wilayah Jakarta sering menyebabkan banjir yang parah, seperti yang terjadi pada tanggal 17 Januari 2013. Kejadian hujan lebat pada tanggal 17 kemungkinan besar disebabkan oleh faktor gangguan cuaca skala sinoptik, yaitu aliran angin dari utara di level permukaan yang sangat kuat atau disebut juga Cross-Equatorial Northerly Surge (CENS). Untuk mengetahui pola pembentukan konvergensi di atas Jakarta dan sekitarnya pada kejadian tersebut, dilakukan analisis spasial konvergensi dan menggunakan simulasi model prediksi cuaca numerik COSMO di atas Jawa Barat pada 17 Januari 2013. Hasil simulasi menunjukkan konvergensi terjadi pada pagi hari di utara Jakarta, lalu menyebar ke tenggara dan menumbuhkan pusat-pusat konvergensi baru di beberapa wilayah di Jawa Barat. Konvergensi di bagian tenggara persisten hingga malam hari di wilayah sekitar GarutHlm.237-25

    Pengaruh El Nino 1997 Terhadap Variabilitas Ozon Total Indonesia

    Full text link
    Penelitian ini dilakukan untuk melihat pengaruh El Nino 1997 terhadapvariabilitas ozon total Indonesia 1997-2005. Data ozon global dari TOMS (Total OzoneMapping Spectrometer) Satelit NASA pada rentang tahun 1997-2005 diekstrak untukwilayah Indonesia (90W-150E, 12.5S-12.5N). Hasil plot deret waktu menunjukkanbahwa konsentrasi ozon total rata-rata bulanan bervariasi antara 242 hingga 275.38(Dobson Units). Konsentrasi tertinggi terjadi pada Bulan September-Oktober danterendah terjadi pada Bulan Desember-Januari. Konsentrasi ozon total di Indonesiameningkat pada saat terjadi El Nino kuat, yakni mencapai 275.38 DU. Hasil penelitianjuga menunjukkan bahwa pada tahun terjadi El Nino lemah, yakni tahun 2002 dan2004, konsentrasi ozon juga meningkat pada Bulan September yakni berturut-turut271.40 dan 274.64 DU. Pada tahun-tahun tidak terjadi El Nino, yaitu 2001, 2003, 2005,konsentrasi ozon tertinggi berturut-turut pada September adalah: 270.06, 268.14,262.68 DU. Wilayah di Indonesia yang dipengaruhi El Nino kuat selama September-Oktober 1997 adalah Halmahera, Sulawesi Utara, dan Papua Utara dengan konsentrasiozon sebesar 282-294 DU. Pada wilayah lainnya konsentrasi juga meningkat menjadi286-290 DU, yaitu Sulawesi Utara, Sulawesi Tengah, MalukuHal.75-8

    HIGHLIGHT : Kemarau Basah dan Keraguan Petani

    Full text link
    Hal. 5 -
    corecore