29 research outputs found
Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
© 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Mapping of myeloperoxidase epitopes recognized by MPO-ANCA using human-mouse MPO chimers
Myeloperoxidase ( MPO) is one of the major target antigens of antineutrophil cytoplasmic autoantibodies ( ANCA) found in patients with small-vessel vasculitis and pauci-immune necrotizing glomerulonephritis. To date, the target epitopes of MPO-ANCA remain poorly defined. Human MPO-ANCA do not typically bind mouse MPO. We utilized the differences between human and mouse MPO to identify the target regions of MPO-ANCA. We generated five chimeric MPO molecules in which we replaced different segments of the human or mouse molecules with their homologous counterpart from the other species. Of serum samples from 28 patients screened for this study, 43 samples from 14 patients with MPO-ANCA-associated vasculitis were tested against recombinant human and mouse MPO and the panel of chimeric molecules. Sera from 64 and 71% of patients bound to the carboxy-terminus of the heavy chain, in the regions of amino acids 517-667 or 668-745, respectively. No patient serum bound the MPO light chain or the amino-terminus of the heavy chain. All sera bound to only one or two regions of MPO. Although the pattern of MPO-ANCA binding changed over time ( 4-27 months) in 6 of 10 patients with several serum samples, such changes were infrequent. Other target regions of MPO-ANCA may not have been detected due to conformational differences between the native and recombinant forms of MPO. MPO-ANCA do not target a single epitope, but rather a small number of regions of MPO, primarily in the carboxy-terminus of the heavy chain
Analysis of extracellular mRNA in human urine reveals splice variant biomarkers of muscular dystrophies
Patients with myotonic dystrophy need to undergo invasive muscle biopsies to monitor disease progression and response to therapy. Here, the authors show that extracellular RNAs in human urine can be used as biomarkers to differentiate patients from unaffected controls, and to monitor exon skipping in patients with Duchenne muscular dystrophy taking the drug eteplirsen