402 research outputs found

    The nature of the highest energy cosmic rays

    Get PDF
    Ultra high energy gamma rays produce electron--positron pairs in interactions on the geomagnetic field. The pair electrons suffer magnetic bremsstrahlung and the energy of the primary gamma ray is shared by a bunch of lower energy secondaries. These processes reflect the structure of the geomagnetic field and cause experimentally observable effects. The study of these effects with future giant air shower arrays can identify the nature of the highest energy cosmic rays as either gamma-rays or nuclei.Comment: 15 pages of RevTeX plus 6 postscript figures, tarred, gzipped and uuencoded. Subm. to Physical Review

    Asymptotic conditions of motion for radiating charged particles

    Get PDF
    Approximate asymptotic conditions on the motion of compact, electrically charged particles are derived within the framework of general relativity using the Einstein- Infeld-Hoffmann (EIH) surface integral method. While superficially similar to the Abraham-Lorentz and Lorentz-Dirac (ALD) equations of motion, these conditions differ from them in several fundamental ways. They are not equations of motion in the usual sense but rather a set of conditions which these motions must obey in the asymptotic future of an initial value surface. In addition to being asymptotic, these conditions of motion are approximate and apply, as do the original EIH equations, only to slowly moving systems. Also, they do not admit the run- away solutions of these other equations. As in the original EIH work, they are integrability conditions gotten from integrating the empty-space (i.e., source free) Einstein-Maxwell equations of general relativity over closed two-surfaces surrounding the sources of the fields governed by these equations. No additional ad hoc assumptions, such as the form of a force law or the introduction of inertial reaction terms, needed to derive the ALD equations are required for this purpose. Nor is there a need for any of the infinite mass renormalizations that are required in deriving these other equations.Comment: 15 page

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10Âč⁶GeV and higher.R. J. Protheroe and Todor Stane

    The maximally entangled symmetric state in terms of the geometric measure

    Full text link
    The geometric measure of entanglement is investigated for permutation symmetric pure states of multipartite qubit systems, in particular the question of maximum entanglement. This is done with the help of the Majorana representation, which maps an n qubit symmetric state to n points on the unit sphere. It is shown how symmetries of the point distribution can be exploited to simplify the calculation of entanglement and also help find the maximally entangled symmetric state. Using a combination of analytical and numerical results, the most entangled symmetric states for up to 12 qubits are explored and discussed. The optimization problem on the sphere presented here is then compared with two classical optimization problems on the S^2 sphere, namely Toth's problem and Thomson's problem, and it is observed that, in general, they are different problems.Comment: 18 pages, 15 figures, small corrections and additions to contents and reference

    Ultra-High Energy Gamma Rays in Geomagnetic Field and Atmosphere

    Get PDF
    The nature and origin of ultra-high energy (UHE: reffering to > 10^19 eV) cosmic rays are great mysteries in modern astrophysics. The current theories for their explanation include the so-called "top-down" decay scenarios whose main signature is a large ratio of UHE gamma rays to protons. Important step in determining the primary composition at ultra-high energies is the study of air shower development. UHE gamma ray induced showers are affected by the Landau-Pomeranchuk-Migdal (LPM) effect and the geomagnetic cascading process. In this work extensive simulations have been carried out to study the characteristics of air showers from UHE gamma rays. At energies above several times 10^19 eV the shower is affected by geomagnetic cascading rather than by the LPM effect. The properties of the longitudinal development such as average depth of the shower maximum or its fluctuations depend strongly on both primary energy and incident direction. This feature may provide a possible evidence of the UHE gamma ray presence by fluorescence detectors.Comment: 27 pages, 12 figures, submitted to Phys.Rev.

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure

    Forming Judgments of Attitude Certainty, Intensity, and Importance: The Role of Subjective Experiences

    Full text link
    Two studies examined the impact of subjective experiences on reports of attitude certainty, intensity, and importance. In Study 1, participants with moderate or extreme attitudes toward doctor-assisted suicide generated three (easy) or seven (hard) arguments that either supported or countered their opinion toward the issue prior to indicating the strength of their attitude. Participants with moderate attitudes rated their opinions as more intense, personally important, and held with greater certainty when they had generated either a small number of supporting arguments or a large number of opposing arguments. Ratings provided by individuals with extreme attitudes were unaffected by the argument generation task. In Study 2, the impact of ease of recall on strength-related judgments was eliminated when it was rendered nondiagnostic by a misattribution manipulation. Implications of these findings for attitude strength and other judgmental phenomena are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68385/2/10.1177_0146167299025007001.pd
    • 

    corecore