989 research outputs found

    Tau lifetime and decays

    Full text link
    Recent results of a high-statistics study of tau lepton properties and decays at B factories are reviewed. We discuss measurements of tau lifetime, branching fractions, and spectral functions for several hadronic tau decay modes with KS0K^0_S. Results of a search for lepton flavor violating tau decays as well as CP symmetry violation are briefly discussed.Comment: Presented at the 2014 Flavor Physics and CP Violation (FPCP-2014), Marseille, France, May 26-30 2014, 19 pages, 8 figures, 3 table

    τ dipole moments via radiative leptonic τ decays

    Get PDF
    We propose a new method to probe the magnetic and electric dipole moments of the τ lepton using precise measurements of the differential rates of radiative leptonic τ decays at high-luminosity B factories. Possible deviations of these moments from the Standard Model values are analyzed in an effective Lagrangian approach, thus providing model-independent results. Analytic expressions for the relevant non-standard contributions to the differential decay rates are presented. Earlier proposals to probe the τ dipole moments are examined. A detailed feasibility study of our method is performed in the conditions of the Belle and Belle II experiments at the KEKB and Super-KEKB colliders, respectively. This study shows that our approach, applied to the planned full set of Belle II data for radiative leptonic τ decays, has the potential to improve the present experimental bound on the τ anomalous magnetic moment. On the contrary, its foreseen sensitivity is not expected to lower the current experimental limit on the τ electric dipole moment

    Stringent constraints on the scalar K pi form factor from analyticity, unitarity and low-energy theorems

    Get PDF
    We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t=0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher order ChPT corrections at the second Callan-Treiman point.Comment: 5 pages latex, uses EPJ style files, 3 figures, replaced with version accepted by EPJ

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Study of the process e+eppˉe^+e^-\to p\bar{p} in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

    Get PDF
    Using a data sample of 6.8 pb1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+ee^+e^- collider we select about 2700 events of the e+eppˉe^+e^- \to p\bar{p} process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio GE/GM=1.49±0.23±0.30|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30
    corecore