2 research outputs found

    Nautical Research Platform for Water-Bound Experiments

    Get PDF
    Conducting research in lakes and rivers requires large crews and heavy-duty equipment, making even simple tests more costly and time consuming. Newer research methods are evolving constantly as new technology enables more precise and accessible experiments to be conducted. The need for simple execution of water-bound experiments exists and must be addressed to aid our understanding of these environments. We at the Microgravity Undergraduate Research Team have taken our previous research in autonomous Unmanned Surface Vehicles (USVs) and applied our efforts to relieving this problem. Our current research aims to provide a universal platform for research and experiments to be conducted in lakes and rivers, where we can then expand our efforts to more broad applications. The design allows for remote-control navigation by one user and easy portability. To address precision in experimentation, we have integrated autonomous GPS waypoint navigation which removes user error in sensitive measurements. The most important factor in its design is modularity; the ability to accommodate a wide range of equipment for research. Our platform succeeds in making water-bound experiments more accessible and more precise for a multitude of potential applications

    Water Adaptive Limber Locomotive Effector (WALL-E)

    No full text
    There are many celestial bodies in the Solar System that have the potential for harboring life such as the moons Europa and Enceladus; these worlds hide away vast oceans under thick layers of ice. The potential for these bodies to contain other lifeforms has piqued the interest of organizations on Earth, such as the National Aeronautics and Space Administration (NASA), as destinations for future missions. Because of the distances and relatively harsh conditions involved, Remotely Operated Vehicles (ROVs) would be sent on the initial missions to explore these worlds. The NASA Jet Propulsion Laboratory (JPL) has developed a remotely-operated Mini-Arm for use on an ROV. This mini arm would be used to explore the oceans of these distant worlds. However, it is in need of an end effector capable of manipulating objects of interest; this was the task of the Boise State University Microgravity Team. During the course of the 2018-2019 school year, the team designed and fabricated WALL-E as a flexible and dexterous solution to subsurface gripping. The design, degrees of freedom, and simple user interface allow the operator to easily manipulate samples of varying dimensions and geometries, akin to those potentially found on the aforementioned ocean worlds
    corecore