21 research outputs found

    Relaxation and domain wall structure of bilayer moire systems

    Full text link
    Moire patterns result from setting a 2D material such as graphene on another 2D material with a small twist angle or from the lattice mismatch of 2D heterostructures. We present a continuum model for the elastic energy of these bilayer moire structures that includes an intralayer elastic energy and an interlayer misfit energy that is minimized at two stackings (disregistries). We show by theory and computation that the displacement field that minimizes the global elastic energy subject to a global boundary constraint gives large alternating regions of one of the two energy-minimizing stackings separated by domain walls. We derive a model for the domain wall structure from the continuum bilayer energy and give a rigorous asymptotic estimate for the structure. We also give an improved estimate for the L2-norm of the gradient on the moire unit cell for twisted bilayers that scales at most inversely linearly with the twist angle, a result which is consistent with the formation of one-dimensional domain walls with a fixed width around triangular domains at very small twist angles.Comment: 20 pages, 14 figure

    Non-Abelian topological defects and strain mapping in 2D moir\'e materials

    Full text link
    We present a general method to analyze the topological nature of the domain boundary connectivity that appeared in relaxed moir\'e superlattice patterns at the interface of 2-dimensional (2D) van der Waals (vdW) materials. At large enough moir\'e lengths, all moir\'e systems relax into commensurated 2D domains separated by networks of dislocation lines. The nodes of the 2D dislocation line network can be considered as vortex-like topological defects. We find that a simple analogy to common topological systems with an S1S^1 order parameter, such as a superconductor or planar ferromagnet, cannot correctly capture the topological nature of these defects. For example, in twisted bilayer graphene, the order parameter space for the relaxed moir\'e system is homotopy equivalent to a punctured torus. Here, the nodes of the 2D dislocation network can be characterized as elements of the fundamental group of the punctured torus, the free group on two generators, endowing these network nodes with non-Abelian properties. Extending this analysis to consider moir\'e patterns generated from any relative strain, we find that antivortices occur in the presence of anisotropic heterostrain, such as shear or anisotropic expansion, while arrays of vortices appear under twist or isotropic expansion between vdW materials. Experimentally, utilizing the dark field imaging capability of transmission electron microscopy (TEM), we demonstrate the existence of vortex and antivortex pair formation in a moir\'e system, caused by competition between different types of heterostrains in the vdW interfaces. We also present a methodology for mapping the underlying heterostrain of a moir\'e structure from experimental TEM data, which provides a quantitative relation between the various components of heterostrain and vortex-antivortex density in moir\'e systems.Comment: 15 pages with 11 figure

    Dual-gated graphene devices for near-field nano-imaging

    Full text link
    Graphene-based heterostructures display a variety of phenomena that are strongly tunable by electrostatic local gates. Monolayer graphene (MLG) exhibits tunable surface plasmon polaritons, as revealed by scanning nano-infrared experiments. In bilayer graphene (BLG), an electronic gap is induced by a perpendicular displacement field. Gapped BLG is predicted to display unusual effects such as plasmon amplification and domain wall plasmons with significantly larger lifetime than MLG. Furthermore, a variety of correlated electronic phases highly sensitive to displacement fields have been observed in twisted graphene structures. However, applying perpendicular displacement fields in nano-infrared experiments has only recently become possible (Ref. 1). In this work, we fully characterize two approaches to realizing nano-optics compatible top-gates: bilayer MoS2\text{MoS}_2 and MLG. We perform nano-infrared imaging on both types of structures and evaluate their strengths and weaknesses. Our work paves the way for comprehensive near-field experiments of correlated phenomena and plasmonic effects in graphene-based heterostructures

    Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene

    Full text link
    Control of the interlayer twist angle in two-dimensional (2D) van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moir\'e superlattice of tunable length scale. In twisted bilayer graphene (TBG), the simple moir\'e superlattice band description suggests that the electronic band width can be tuned to be comparable to the vdW interlayer interaction at a 'magic angle', exhibiting strongly correlated behavior. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favoring interlayer commensurability, which competes with the intralayer lattice distortion. Here we report the atomic scale reconstruction in TBG and its effect on the electronic structure. We find a gradual transition from incommensurate moir\'e structure to an array of commensurate domain structures as we decrease the twist angle across the characteristic crossover angle, θc\theta_c ~1\deg. In the twist regime smaller than θc\theta_c where the atomic and electronic reconstruction become significant, a simple moir\'e band description breaks down. Upon applying a transverse electric field, we observe electronic transport along the network of one-dimensional (1D) topological channels that surround the alternating triangular gapped domains, providing a new pathway to engineer the system with continuous tunability

    SURVEY AND SUMMARY Spatial organization of transcription by RNA polymerase III

    Full text link
    RNA polymerase III (pol III) transcribes many essential, small, noncoding RNAs, including the 5S rRNAs and tRNAs. While most pol III-transcribed genes are found scattered throughout the linear chromosome maps or in multiple linear clusters, there is increasing evidence that many of these genes prefer to be spatially clustered, often at or near the nucleolus. This association could create an environment that fosters the coregulation of transcription by pol III with transcription of the large ribosomal RNA repeats by RNA polymerase I (pol I) within the nucleolus. Given the high number of pol III-transcribed genes in all eukaryotic genomes, the spatial organization of these genes is likely to affect a large portion of the other genes in a genome. In this Survey and Summary we analyze the reports regarding the spatial organization of pol III genes and address the potential influence of this organization on transcriptional regulation

    Silencing near tRNA genes requires nucleolar localization

    Full text link
    Transcription by RNA polymerase II is antagonized by the presence of a nearby tRNA gene in Saccharomyces cerevisiae. To test hypotheses concerning the mechanism of this tRNA gene-mediated (tgm) silencing, the effects of specific gene deletions were determined. The results show that the mechanism of silencing near tRNA genes is fundamentally different from other forms of transcriptional silencing in yeast. Rather, tgm silencing is dependent on the ability to cluster the dispersed tRNA genes in or near the nucleolus, constituting a form of three-dimensional gene control. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc
    corecore