1 research outputs found
Semi-automatic Assessment of Cervical Vertebral Maturation Stages using Cephalograph Images and Centroid-based Clustering
KoriÅ”tenjem radiograma istraživala se uÄinkovitost razliÄitih numeriÄkih tehnika za poluautomatske procjene stupnja sazrijevanja vratnih kralježaka (CVM). Metode: Kefalogrami 211 pacijenata snimljeni su i spremljeni u digitalnom obliku. Nakon toga su, s pomoÄu posebno razvijenog softvera i tih pohranjenih radiograma, specijalisti ortodoncije oznaÄili i mjerili za svakog pacijenta nekoliko karakteristiÄnih kefalometrijskih obilježja. Rezultati su bili potrebni za automatsko odreÄivanje stupnja sazrijevanja vratnih kralježaka s nekoliko numeriÄkih tehnika, meÄu kojima K znaÄi klasteriranje (grupiranje), a Fuzzy C ā dusteriranje (rasipanje). Rezultati su usporeÄeni s podacima koje su dobili specijalisti. Rezultati: Najbolji rezultati dobiveni su koriÅ”tenjem Fuzzy C rasipanja. ToÄna ocjena stupnja CVM-a iznosila je oko 70 posto, a procjena klase bila je viÅ”a od 99 posto. ZakljuÄak: Eksperimentalni rezultati pokazuju da se može razviti potpuno automatizirani sustav za procjenu i predviÄanje stupnjeva CVM-a, premda joÅ” treba rijeÅ”iti manje teÅ”koÄe prije primjene u kliniÄkoj praksi.Introduction: Effectiveness of different numerical techniques for use in semi-automatic assessment of cervical vertebral maturation stages (CVM) using radiograph images was investigated. Methods: Lateral cephalographs of 211 patients were recorded and stored in a digital form. Using the specially developed software application, orthodontic experts marked and measured several characteristic cephalometric parameters for every patient. The results of these measurements were used to automatically determine the cervical vertebral maturation stage using numerical techniques, including the K-means clustering and the Fuzzy C-means clustering. These results were compared with the assessment made manually by the trained orthodontists.Results: The best results were achieved using the modified Fuzzy-C means clustering. Identification of the correct CVM stage was around 70%, while the assessment including the adjacent classes [+/- 1 developmental stage] was over 99%. Conclusions: Experimental results show that it may be possible to develop a fully automated system to assess CVM stages, although there are still minor issues that need to be addressed before the methodās implementation in the clinical practice