571 research outputs found
Topical Issues for Particle Acceleration Mechanisms in Astrophysical Shocks
Particle acceleration at plasma shocks appears to be ubiquitous in the
universe, spanning systems in the heliosphere, supernova remnants, and
relativistic jets in distant active galaxies and gamma-ray bursts. This review
addresses some of the key issues for shock acceleration theory that require
resolution in order to propel our understanding of particle energization in
astrophysical environments. These include magnetic field amplification in shock
ramps, the non-linear hydrodynamic interplay between thermal ions and their
extremely energetic counterparts possessing ultrarelativistic energies, and the
ability to inject and accelerate electrons in both non-relativistic and
relativistic shocks. Recent observational developments that impact these issues
are summarized. While these topics are currently being probed by
astrophysicists using numerical simulations, they are also ripe for
investigation in laboratory experiments, which potentially can provide valuable
insights into the physics of cosmic shocks.Comment: 13 pages, no figures. Invited review, accepted for publication in
Astrophysics and Space Science, as part of the HEDLA 2006 conference
proceeding
Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays
Laboratory experiments to explore plasma conditions and stimulated particle
acceleration can illuminate aspects of the cosmic particle acceleration
process. Here we discuss the cosmic-ray candidate source object variety, and
what has been learned about their particle-acceleration characteristics. We
identify open issues as discussed among astrophysicists. -- The cosmic ray
differential intensity spectrum is a rather smooth power-law spectrum, with two
kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear
if these kinks are related to boundaries between different dominating sources,
or rather related to characteristics of cosmic-ray propagation. We believe that
Galactic sources dominate up to 10^17 eV or even above, and the extragalactic
origin of cosmic rays at highest energies merges rather smoothly with Galactic
contributions throughout the 10^15--10^18 eV range. Pulsars and supernova
remnants are among the prime candidates for Galactic cosmic-ray production,
while nuclei of active galaxies are considered best candidates to produce
ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes
are related to shocks from violent ejections of matter from energetic sources
such as supernova explosions or matter accretion onto black holes. Details of
such acceleration are difficult, as relativistic particles modify the structure
of the shock, and simple approximations or perturbation calculations are
unsatisfactory. This is where laboratory plasma experiments are expected to
contribute, to enlighten the non-linear processes which occur under such
conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental
physics and ultra-high laser fields. From review talk at "Extreme Light
Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings
and references at EPJD proofs stag
Electrostatic Potentials in Supernova Remnant Shocks
Recent advances in the understanding of the properties of supernova remnant
shocks have been precipitated by the Chandra and XMM X-ray Observatories, and
the HESS Atmospheric Cerenkov Telescope in the TeV band. A critical problem for
this field is the understanding of the relative degree of dissipative
heating/energization of electrons and ions in the shock layer. This impacts the
interpretation of X-ray observations, and moreover influences the efficiency of
injection into the acceleration process, which in turn feeds back into the
thermal shock layer energetics and dynamics. This paper outlines the first
stages of our exploration of the role of charge separation potentials in
non-relativistic electron-ion shocks where the inertial gyro-scales are widely
disparate, using results from a Monte Carlo simulation. Charge density spatial
profiles were obtained in the linear regime, sampling the inertial scales for
both ions and electrons, for different magnetic field obliquities. These were
readily integrated to acquire electric field profiles in the absence of
self-consistent, spatial readjustments between the electrons and the ions. It
was found that while diffusion plays little role in modulating the linear field
structure in highly oblique and perpendicular shocks, in quasi-parallel shocks,
where charge separations induced by gyrations are small, and shock-layer
electric fields are predominantly generated on diffusive scales.Comment: 7 pages, 2 embedded figures, Accepted for publication in Astrophysics
and Space Science, as part of the HEDLA 2006 conference proceeding
Magnetic fields in cosmic particle acceleration sources
We review here some magnetic phenomena in astrophysical particle accelerators
associated with collisionless shocks in supernova remnants, radio galaxies and
clusters of galaxies. A specific feature is that the accelerated particles can
play an important role in magnetic field evolution in the objects. We discuss a
number of CR-driven, magnetic field amplification processes that are likely to
operate when diffusive shock acceleration (DSA) becomes efficient and
nonlinear. The turbulent magnetic fields produced by these processes determine
the maximum energies of accelerated particles and result in specific features
in the observed photon radiation of the sources. Equally important, magnetic
field amplification by the CR currents and pressure anisotropies may affect the
shocked gas temperatures and compression, both in the shock precursor and in
the downstream flow, if the shock is an efficient CR accelerator. Strong
fluctuations of the magnetic field on scales above the radiation formation
length in the shock vicinity result in intermittent structures observable in
synchrotron emission images. Resonant and non-resonant CR streaming
instabilities in the shock precursor can generate mesoscale magnetic fields
with scale-sizes comparable to supernova remnants and even superbubbles. This
opens the possibility that magnetic fields in the earliest galaxies were
produced by the first generation Population III supernova remnants and by
clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition
In this paper we investigate the effect of stochasticity in the spatial and
temporal distribution of supernova remnants on the spectrum and chemical
composition of cosmic rays observed at Earth. The calculations are carried out
for different choices of the diffusion coefficient D(E) experienced by cosmic
rays during propagation in the Galaxy. In particular, at high energies we
assume that D(E)\sim E^{\delta}, with and being the
reference scenarios. The large scale distribution of supernova remnants in the
Galaxy is modeled following the distribution of pulsars, with and without
accounting for the spiral structure of the Galaxy. We find that the stochastic
fluctuations induced by the spatial and temporal distribution of supernovae,
together with the effect of spallation of nuclei, lead to mild but sensible
violations of the simple, leaky-box-inspired rule that the spectrum observed at
Earth is with , where
is the slope of the cosmic ray injection spectrum at the sources. Spallation of
nuclei, even with the small rates appropriate for He, may account for slight
differences in spectral slopes between different nuclei, providing a possible
explanation for the recent CREAM observations. For we find that
the slope of the proton and helium spectra are and
respectively at energies above 1 TeV (to be compared with the measured values
of and ). For the hardening of the He
spectra is not observed. We also comment on the effect of time dependence of
the escape of cosmic rays from supernova remnants, and of a possible clustering
of the sources in superbubbles. In a second paper we will discuss the
implications of these different scenarios for the anisotropy of cosmic rays.Comment: 28 pages, To appear in JCA
Understanding hadronic gamma-ray emission from supernova remnants
We aim to test the plausibility of a theoretical framework in which the
gamma-ray emission detected from supernova remnants may be of hadronic origin,
i.e., due to the decay of neutral pions produced in nuclear collisions
involving relativistic nuclei. In particular, we investigate the effects
induced by magnetic field amplification on the expected particle spectra,
outlining a phenomenological scenario consistent with both the underlying
Physics and the larger and larger amount of observational data provided by the
present generation of gamma experiments, which seem to indicate rather steep
spectra for the accelerated particles. In addition, in order to study to study
how pre-supernova winds might affect the expected emission in this class of
sources, the time-dependent gamma-ray luminosity of a remnant with a massive
progenitor is worked out. Solid points and limitations of the proposed scenario
are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added.
Some typos correcte
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants
Supernova remnants have long been suggested as a class of potential
counterparts to unidentified gamma-ray sources. The mechanisms by which such
gamma-rays can arise may include emission from a pulsar associated with a
remnant, or a variety of processes associated with energetic particles
accelerated by the SNR shock. Imaging and spectral observations in the X-ray
band can be used to identify properties of the remnants that lead to gamma-ray
emission, including the presence of pulsar-driven nebulae, nonthermal X-ray
emission from the SNR shells, and the interaction of SNRs with dense
surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop:
"The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE,
Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
- …