1,099 research outputs found

    The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson's disease

    Full text link
    Published in final edited form as: Mov Disord. 2016 January ; 31(1): 23–38. doi:10.1002/mds.26484.In addition to the classic motor symptoms, Parkinson's disease (PD) is associated with a variety of nonmotor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence‐based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of nonmotor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include nonmotor outcomes in exercise trials with the goal of developing evidence‐based exercise interventions as a safe, broad‐spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD.This work was supported by the National Institute of Mental Health (F31MH102961 to G.O.R.)

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    Peer coaching through mHealth targeting physical activity in people with Parkinson disease: feasibility study

    Get PDF
    BACKGROUND: Long-term engagement in exercise and physical activity mitigates the progression of disability and increases quality of life in people with Parkinson disease (PD). Despite this, the vast majority of individuals with PD are sedentary. There is a critical need for a feasible, safe, acceptable, and effective method to assist those with PD to engage in active lifestyles. Peer coaching through mobile health (mHealth) may be a viable approach. OBJECTIVE: The purpose of this study was to develop a PD-specific peer coach training program and a remote peer-mentored walking program using mHealth technology with the goal of increasing physical activity in persons with PD. We set out to examine the feasibility, safety, and acceptability of the programs along with preliminary evidence of individual-level changes in walking activity, self-efficacy, and disability in the peer mentees. METHODS: A peer coach training program and a remote peer-mentored walking program using mHealth was developed and tested in 10 individuals with PD. We matched physically active persons with PD (peer coaches) with sedentary persons with PD (peer mentees), resulting in 5 dyads. Using both Web-based and in-person delivery methods, we trained the peer coaches in basic knowledge of PD, exercise, active listening, and motivational interviewing. Peer coaches and mentees wore FitBit Zip activity trackers and participated in daily walking over 8 weeks. Peer dyads interacted daily via the FitBit friends mobile app and weekly via telephone calls. Feasibility was determined by examining recruitment, participation, and retention rates. Safety was assessed by monitoring adverse events during the study period. Acceptability was assessed via satisfaction surveys. Individual-level changes in physical activity were examined relative to clinically important differences. RESULTS: Four out of the 5 peer pairs used the FitBit activity tracker and friends function without difficulty. A total of 4 of the 5 pairs completed the 8 weekly phone conversations. There were no adverse events over the course of the study. All peer coaches were "satisfied" or "very satisfied" with the training program, and all participants were "satisfied" or "very satisfied" with the peer-mentored walking program. All participants would recommend this program to others with PD. Increases in average steps per day exceeding the clinically important difference occurred in 4 out of the 5 mentees. CONCLUSIONS: Remote peer coaching using mHealth is feasible, safe, and acceptable for persons with PD. Peer coaching using mHealth technology may be a viable method to increase physical activity in individuals with PD. Larger controlled trials are necessary to examine the effectiveness of this approach.This study is supported by Boston Roybal Center for Active Lifestyle Interventions (RALI Boston), Grant #P30 AG048785, and the American Parkinson Disease Association, Massachusetts chapter. The authors would like to thank Nicole Sullivan, SOT, for her assistance with data management and data collection and Nick Wendel, DPT, for his assistance with data collection. Additionally, the authors would like to thank the participants in this study for their time, effort, and insights. (P30 AG048785 - Boston Roybal Center for Active Lifestyle Interventions (RALI Boston); American Parkinson Disease Association, Massachusetts chapter)Accepted manuscrip

    Highly challenging balance program reduces fall rate in Parkinson disease

    Full text link
    Published in final edited form as: J Neurol Phys Ther. 2016 January ; 40(1): 24–30. doi:10.1097/NPT.0000000000000111BACKGROUND AND PURPOSE: There is a paucity of effective treatment options to reduce falls in Parkinson disease (PD). Although a variety of rehabilitative approaches have been shown to improve balance, evidence of a reduction in falls has been mixed. Prior balance trials suggest that programs with highly challenging exercises had superior outcomes. We investigated the effects of a theory-driven, progressive, highly challenging group exercise program on fall rate, balance, and fear of falling. METHODS: Twenty-three subjects with PD participated in this randomized cross-over trial. Subjects were randomly allocated to 3 months of active balance exercises or usual care followed by the reverse. During the active condition, subjects participated in a progressive, highly challenging group exercise program twice weekly for 90 minutes. Outcomes included a change in fall rate over the 3-month active period and differences in balance (Mini-Balance Evaluation Systems Test [Mini-BESTest]), and fear of falling (Falls Efficacy Scale-International [FES-I]) between active and usual care conditions. RESULTS: The effect of time on falls was significant (regression coefficient = -0.015 per day, P < 0.001). The estimated rate ratio comparing incidence rates at time points 1 month apart was 0.632 (95% confidence interval, 0.524-0.763). Thus, there was an estimated 37% decline in fall rate per month (95% confidence interval, 24%-48%). Improvements were also observed on the Mini-BESTest (P = 0.037) and FES-I (P = 0.059). DISCUSSION AND CONCLUSIONS: The results of this study show that a theory-based, highly challenging, and progressive exercise program was effective in reducing falls, improving balance, and reducing fear of falling in PD.Video abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A120). TRIAL REGISTRATION: ClinicalTrials.gov NCT02302144.This study was funded by the Boston Claude D. Pepper Older Americans Independence Center (NIH 5P30AG031679). Additional support was provided by the American Parkinson Disease Association (ADPA); ADPAMA Chapter. (NIH 5P30AG031679 - Boston Claude D. Pepper Older Americans Independence Center; American Parkinson Disease Association (ADPA); ADPAMA Chapter

    Randomized controlled trial of a home-based action observation intervention to improve walking in Parkinson disease

    Full text link
    Published in final edited form as: Arch Phys Med Rehabil. 2016 May ; 97(5): 665–673. doi:10.1016/j.apmr.2015.12.029.OBJECTIVE: To examine the feasibility and efficacy of a home-based gait observation intervention for improving walking in Parkinson disease (PD). DESIGN: Participants were randomly assigned to an intervention or control condition. A baseline walking assessment, a training period at home, and a posttraining assessment were conducted. SETTING: The laboratory and participants' home and community environments. PARTICIPANTS: Nondemented individuals with PD (N=23) experiencing walking difficulty. INTERVENTION: In the gait observation (intervention) condition, participants viewed videos of healthy and parkinsonian gait. In the landscape observation (control) condition, participants viewed videos of moving water. These tasks were completed daily for 8 days. MAIN OUTCOME MEASURES: Spatiotemporal walking variables were assessed using accelerometers in the laboratory (baseline and posttraining assessments) and continuously at home during the training period. Variables included daily activity, walking speed, stride length, stride frequency, leg swing time, and gait asymmetry. Questionnaires including the 39-item Parkinson Disease Questionnaire (PDQ-39) were administered to determine self-reported change in walking, as well as feasibility. RESULTS: At posttraining assessment, only the gait observation group reported significantly improved mobility (PDQ-39). No improvements were seen in accelerometer-derived walking data. Participants found the at-home training tasks and accelerometer feasible to use. CONCLUSIONS: Participants found procedures feasible and reported improved mobility, suggesting that observational training holds promise in the rehabilitation of walking in PD. Observational training alone, however, may not be sufficient to enhance walking in PD. A more challenging and adaptive task, and the use of explicit perceptual learning and practice of actions, may be required to effect change

    Rural Teachers’ Literacy Practices In and Out of the Classroom: Exploring Teacher Characteristics and Literacy Tools

    Get PDF
    Scholars who recognize the socially constructed nature of literacy acknowledge that important literacy processes take place across settings both in and out of school. Most of what is known about these trans-literacy practices relates to students, but little is known about the literacy practices of teachers in and outside of school. This study examines through survey research the in- and out-of-school literacy practices of teachers in a rural K-12 school district. The findings of the study suggest that for early career teachers, their out-of-school literacy practices are more deliberately connected to their literacy practices in school than for mid- and later-career teachers. This study calls for more descriptive research on the relationships between teachers’ literacy practices and use of literacy tools outside of school, and their literacy practices and pedagogical approaches to literacy in school

    Negative magnetoresistance in indium antimonide

    Get PDF
    Negative longitudinal miagnetoresistance in indium antimonide subject to a quantizing magnetic field [h oc > kT and oc tau >> 1 where oc is the cyclotron frequency] has been investigated under ohmic and non-ohmic conditions. Conduction band electron concentrations ranged from 1 x 1014 cm up to 2.23 x 10 15 cm-3. Under ohmic conditions the negative magnetoresistance was studied at various stabilized temperatures between 4.2&deg;K and 130&deg;K. Non-ohmic results were taken at 4.2&deg;K, using pulsed electric fields up to 10 V cm-1 (5A) to inducefree carrier heating. Using an "electron temperature model" to represent the energy distribution of the electron system, the ohmic and non-ohmic behaviour are compared. The comparison yields soma idea of the validity of this model in the presence of large magnetic and electric fields. The mechanism proposed for the observed negative magneto-resistance is the magnetic field reduction of the small-angla scattering from collisions with the ionized impurities, as originally proposed theoretically by Argyres and Adams (1956) and extended by Dubin skaya (1969). A computer programme is formulated for the extreme quantum limit [h o c > kT and EF] where only the ground state Landau level is occupied. As well as incorporating arbitrary degeneracy the calculations include the effect of drift momentum relaxation by small angle forward scattering events. These contribute to momentum relaxation because of the energy uncertainty of an. electron associated with finite collision times. The role of higher Landau energy levels is also considered. The inclusion of the forward scattering events results in a fairly good quantitative agreement with experiment. Various theoretical approximations and the effects of sample inhomogeneity are discussed as limitations on the agreement. An experimental and theoretical review of the phenomenon of negative magnetoresistance in semiconductors, associated with a variety of mechanisms, is also given.<p

    Toward understanding ambulatory activity decline in Parkinson disease

    Full text link
    BACKGROUND: Declining ambulatory activity represents an important facet of disablement in Parkinson disease (PD). OBJECTIVE: The primary study aim was to compare the 2-year trajectory of ambulatory activity decline with concurrently evolving facets of disability in a small cohort of people with PD. The secondary aim was to identify baseline variables associated with ambulatory activity at 1- and 2-year follow-up assessments. DESIGN: This was a prospective, longitudinal cohort study. METHODS: Seventeen people with PD (Hoehn and Yahr stages 1-3) were recruited from 2 outpatient settings. Ambulatory activity data were collected at baseline and at 1- and 2-year annual assessments. Motor, mood, balance, gait, upper extremity function, quality of life, self-efficacy, and levodopa equivalent daily dose data and data on activities of daily living also were collected. RESULTS: Participants displayed significant 1- and 2-year declines in the amount and intensity of ambulatory activity concurrently with increasing levodopa equivalent daily dose. Worsening motor symptoms and slowing of gait were apparent only after 2 years. Concurrent changes in the remaining clinical variables were not observed. Baseline ambulatory activity and physical performance variables had the strongest relationships with 1- and 2-year mean daily steps. LIMITATIONS: The sample was small and homogeneous. CONCLUSIONS: Future research that combines ambulatory activity monitoring with a broader and more balanced array of measures would further illuminate the dynamic interactions among evolving facets of disablement and help determine the extent to which sustained patterns of recommended daily physical activity might slow the rate of disablement in PD.This study was funded primarily by the Davis Phinney Foundation and the Parkinson Disease Foundation. Additional funding was provided by Boston University Building Interdisciplinary Research Careers in Women's Health (K12 HD043444), the National Institutes of Health (R01NS077959), the Utah Chapter of the American Parkinson Disease Association (APDA), the Greater St Louis Chapter of the APDA, and the APDA Center for Advanced PD Research at Washington University. (Davis Phinney Foundation; Parkinson Disease Foundation; K12 HD043444 - Boston University Building Interdisciplinary Research Careers in Women's Health; R01NS077959 - National Institutes of Health; Utah Chapter of the American Parkinson Disease Association (APDA); Greater St Louis Chapter of the APDA; APDA Center for Advanced PD Research at Washington University

    Dual tasking in Parkinson's disease: cognitive consequences while walking

    Full text link
    Published in final edited form as: Neuropsychology. 2017 September; 31(6): 613–623. doi:10.1037/neu0000331.OBJECTIVE: Cognitive deficits are common in Parkinson's disease (PD) and exacerbate the functional limitations imposed by PD's hallmark motor symptoms, including impairments in walking. Though much research has addressed the effect of dual cognitive-locomotor tasks on walking, less is known about their effect on cognition. The purpose of this study was to investigate the relation between gait and executive function, with the hypothesis that dual tasking would exacerbate cognitive vulnerabilities in PD as well as being associated with gait disturbances. METHOD: Nineteen individuals with mild-moderate PD without dementia and 13 age- and education-matched normal control adults (NC) participated. Executive function (set-shifting) and walking were assessed singly and during dual tasking. RESULTS: Dual tasking had a significant effect on cognition (reduced set-shifting) and on walking (speed, stride length) for both PD and NC, and also on stride frequency for PD only. The impact of dual tasking on walking speed and stride frequency was significantly greater for PD than NC. Though the group by condition interaction was not significant, PD had fewer set-shifts than NC on dual task. Further, relative to NC, PD showed significantly greater variability in cognitive performance under dual tasking, whereas variability in motor performance remained unaffected by dual tasking. CONCLUSIONS: Dual tasking had a significantly greater effect in PD than in NC on cognition as well as on walking. The results suggest that assessment and treatment of PD should consider the cognitive as well as the gait components of PD-related deficits under dual-task conditions. (PsycINFO Database Record)

    Classroom-based interventions to improve students' learning capital

    Get PDF
    Published version of the paper reproduced here with permission from the publisherVictoria, Australi
    • 

    corecore