12 research outputs found

    Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability

    Get PDF
    Rationale: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of histone deacetylase 9 (HDAC9) in atherosclerosis and its clinical complications including stroke and myocardial infarction. Objective: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. Methods and Results: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further employed two-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content whilst increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKKα and β resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting pro-inflammatory responses in macrophages. Transcriptional profiling using RNA-Seq revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKβ. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL-1β and IL-6. Conclusions: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation

    New therapeutic targets in inflammation (OC02)

    No full text

    FMIP controls the adipocyte lineage commitment of C2C12 cells by downmodulation of C/EBP alpha.

    No full text
    Fms interacting protein (FMIP) is a substrate for Fms tyrosine kinase, and a nuclear/cytoplasm shuttling protein with a leucine zipper. As the phosphorylation of FMIP is observed in insulin-stimulated preadipocytes, we examined the role of FMIP in adipocyte differentiation, using the mesenchymal multipotent stem cells, C2C12 cells, that can differentiate into adipocytes, muscle cells and osteoblasts. Ectopic expression of FMIP in C2C12 impairs the adipocyte differentiation induced by treatment with insulin, dexamethasone and 3-isobutyl-1-methylxanthine. These cells exhibit muscle phenotype with multinuclear morphology. Furthermore, knockdown of endogenous FMIP expression by small interfering RNA improves adipocytic lineage commitment of C2C12 cells, while impairing muscle differentiation. Upon stimulation with insulin, CCAAT/enhancer binding protein (C/EBP)beta, but not C/EBPalpha, is upregulated in cells expressing ectopic FMIP, whereas in FMIP knockdown cells, C/EBPalpha is constitutively expressed. Ectopic expression of C/EBPalpha counteracts the effects of FMIP, whereas C/EBPalpha knockdown partially mimics the effects of FMIP in this system. Northern blot analysis and reverse transcriptase-polymerase chain reaction study reveal that ectopic FMIP-expressing cells do not contain the polyadenylated C/EBPalpha mRNA, but contain the C/EBPalpha pre-mRNA, suggesting that FMIP plays a role in RNA processing and/or export. Indeed, a member of the THO complex that plays a role in mRNA export, THOC1, is co-precipitated with FMIP. The data we have acquired on FMIP suggest that it is a target for tyrosine kinase receptors that potentiate mRNA export

    Pathways linking aging and atheroprotection in Mif- deficient atherosclerotic mice

    Get PDF
    Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe(-/-) mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe(-/-) mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe(-/-) model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2(+) macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe(-/-) mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies
    corecore