17 research outputs found
International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium
Acute graft-versus-host disease (GVHD) remains a leading cause of morbidity and nonrelapse mortality after allogeneic hematopoietic cell transplantation. The clinical staging of GVHD varies greatly between transplant centers and is frequently not agreed on by independent reviewers. The lack of standardized approaches to handle common sources of discrepancy in GVHD grading likely contributes to why promising GVHD treatments reported from single centers have failed to show benefit in randomized multicenter clinical trials. We developed guidelines through international expert consensus opinion to standardize the diagnosis and clinical staging of GVHD for use in a large international GVHD research consortium. During the first year of use, the guidance followed discussion of complex clinical phenotypes by experienced transplant physicians and data managers. These guidelines increase the uniformity of GVHD symptom capture, which may improve the reproducibility of GVHD clinical trials after further prospective validation
Recommended from our members
Pomalidomide, bortezomib and low-dose dexamethasone in lenalidomide-refractory and proteasome inhibitor-exposed myeloma
This phase 1 dose-escalation study evaluated pomalidomide, bortezomib (subcutaneous (SC) or intravenous (IV)) and low-dose dexamethasone (LoDEX) in lenalidomide-refractory and proteasome inhibitor-exposed relapsed or relapsed and refractory multiple myeloma (RRMM). In 21-day cycles, patients received pomalidomide (1–4 mg days 1–14), bortezomib (1–1.3 mg/m2 days 1, 4, 8 and 11 for cycles 1–8; days 1 and 8 for cycle ⩾9) and LoDEX. Primary endpoint was to determine the maximum tolerated dose (MTD). Thirty-four patients enrolled: 12 during escalation, 10 in the MTD IV bortezomib cohort and 12 in the MTD SC bortezomib cohort. Patients received a median of 2 prior lines of therapy; 97% bortezomib exposed. With no dose-limiting toxicities, MTD was defined as the maximum planned dose: pomalidomide 4 mg, bortezomib 1.3 mg/m2 and LoDEX. All patients discontinued treatment by data cutoff (2 April 2015). The most common grade 3/4 treatment-emergent adverse events were neutropenia (44%) and thrombocytopenia (26%), which occurred more frequently with IV than SC bortezomib. No grade 3/4 peripheral neuropathy or deep vein thrombosis was reported. Overall response rate was 65%. Median duration of response was 7.4 months. Pomalidomide, bortezomib and LoDEX was well tolerated and effective in lenalidomide-refractory and bortezomib-exposed patients with RRMM
Melphalan flufenamide for relapsed/ refractory multiple myeloma
Despite therapeutic advances and improved patient outcomes in recent years, multiple myeloma (MM) remains a mostly incurable hematologic malignancy. Patients with relapsed/refractory MM (RRMM), especially those with triple-class-refractory disease or poor-prognostic features, have substantially unmet needs for new therapies with novel mechanisms of action. Melphalan flufenamide (melflufen) is the first alkylating peptide-drug conjugate that targets aminopeptidases to show efficacy and manageable safety, in combination with dexamethasone, in patients with RRMM who had received at least 4 prior lines of therapy, including at least 1 immunomodulatory drug, at least 1 proteasome inhibitor and at least 1 anti-CD38 monoclonal antibody, and received accelerated approval by the U.S. Food and Drug Administration (FDA) in early 2021 for use in this patient population. Initial analyses of the phase III OCEAN study data led to melflufen being voluntarily withdrawn from the U.S. market in late 2021, but subsequent analyses have prompted the manufacturer to rescind its voluntary withdrawal to allow further discussions with the U.S. FDA and the regulatory review with the European Medicines Agency (EMA) is also ongoing. Here, we provide a review of the novel mechanism of action and pharmacokinetics of melflufen, as well as key efficacy and safety from clinical studies that supported its initial approval, and discuss the nuances of the OCEAN study data. Melflufen demonstrates the potential of novel peptide-drug conjugates to positively impact the treatment landscape in RRM
Serum miR-29a is upregulated in acute graft-versus-host disease and activates dendritic cells through TLR binding
Acute graft-versus-host disease (aGVHD) continues to be a frequent and devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT), posing as a significant barrier against the widespread use of HSCTs as a curative modality. Recent studies suggested serum/plasma microRNAs (miRs) may predict aGVHD onset. However, little is known about the functional role of circulating miRs in aGVHD. In this article, we show in two independent cohorts that miR-29a expression is significantly upregulated in the serum of allogeneic HSCT patients at aGVHD onset compared with non-aGVHD patients. Serum miR-29a is also elevated as early as 2 wk before time of diagnosis of aGVHD compared with time-matched control subjects. We demonstrate novel functional significance of serum miR-29a by showing that miR-29a binds and activates dendritic cells via TLR7 and TLR8, resulting in the activation of the NF-kB pathway and secretion of proinflammatory cytokines TNF-a and IL-6. Treatment with locked nucleic acid anti-miR-29a significantly improved survival in a mouse model of aGVHD while retaining graft-versus-leukemia effects, unveiling a novel therapeutic target in aGVHD treatment or prevention
International, Multicenter Standardization of Acute Graft-versus-Host Disease Clinical Data Collection: A Report from the Mount Sinai Acute GVHD International Consortium
Acute graft-versus-host disease (GVHD) remains a leading cause of morbidity and nonrelapse mortality after allogeneic hematopoietic cell transplantation. The clinical staging of GVHD varies greatly between transplant centers and is frequently not agreed on by independent reviewers. The lack of standardized approaches to handle common sources of discrepancy in GVHD grading likely contributes to why promising GVHD treatments reported from single centers have failed to show benefit in randomized multicenter clinical trials. We developed guidelines through international expert consensus opinion to standardize the diagnosis and clinical staging of GVHD for use in a large international GVHD research consortium. During the first year of use, the guidance followed discussion of complex clinical phenotypes by experienced transplant physicians and data managers. These guidelines increase the uniformity of GVHD symptom capture, which may improve the reproducibility of GVHD clinical trials after further prospective validation
An early-biomarker algorithm predicts lethal graft-versus-host disease and survival
BACKGROUND. No laboratory test can predict the risk of nonrelapse mortality (NRM) or severe graft-versus-host disease (GVHD) after hematopoietic cellular transplantation (HCT) prior to the onset of GVHD symptoms. METHODS. Patient blood samples on day 7 after HCT were obtained from a multicenter set of 1,287 patients, and 620 samples were assigned to a training set. We measured the concentrations of 4 GVHD biomarkers (ST2, REG3α, TNFR1, and IL-2Rα) and used them to model 6-month NRM using rigorous cross-validation strategies to identify the best algorithm that defined 2 distinct risk groups. We then applied the final algorithm in an independent test set (n = 309) and validation set (n = 358). RESULTS. A 2-biomarker model using ST2 and REG3α concentrations identified patients with a cumulative incidence of 6-month NRM of 28% in the high- risk group and 7% in the low- risk group (P < 0.001). The algorithm performed equally well in the test set (33% vs. 7%, P < 0.001) and the multicenter validation set (26% vs. 10%, P < 0.001). Sixteen percent, 17%, and 20% of patients were at high risk in the training, test, and validation sets, respectively. GVHD-related mortality was greater in high-risk patients (18% vs. 4%, P < 0.001), as was severe gastrointestinal GVHD (17% vs. 8%, P < 0.001). The same algorithm can be successfully adapted to define 3 distinct risk groups at GVHD onset. CONCLUSION. A biomarker algorithm based on a blood sample taken 7 days after HCT can consistently identify a group of patients at high risk for lethal GVHD and NRM