462 research outputs found

    A Review of Prostate Cancer Genome-Wide Association Studies (GWAS).

    Get PDF
    Prostate cancer is the most common cancer in men in Europe and the United States. The genetic heritability of prostate cancer is contributed to by both rarely occurring genetic variants with higher penetrance and moderate to commonly occurring variants conferring lower risks. The number of identified variants belonging to the latter category has increased dramatically in the last 10 years with the development of the genome-wide association study (GWAS) and the collaboration of international consortia that have led to the sharing of large-scale genotyping data. Over 40 prostate cancer GWAS have been reported, with approximately 170 common variants now identified. Clinical utility of these variants could include strategies for population-based risk stratification to target prostate cancer screening to men with an increased genetic risk of disease development, while for those who develop prostate cancer, identifying genetic variants could allow treatment to be tailored based on a genetic profile in the early disease setting. Functional studies of identified variants are needed to fully understand underlying mechanisms of disease and identify novel targets for treatment. This review will outline the GWAS carried out in prostate cancer and the common variants identified so far, and how these may be utilized clinically in the screening for and management of prostate cancer. Cancer Epidemiol Biomarkers Prev; 27(8); 845-57. ©2018 AACR

    Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel

    Get PDF
    Background Rare germline mutations in DNA repair genes are associated with prostate cancer (PCa) predisposition and prognosis. Objective To quantify the frequency of germline DNA repair gene mutations in UK PCa cases and controls, in order to more comprehensively evaluate the contribution of individual genes to overall PCa risk and likelihood of aggressive disease. Design, setting, and participants We sequenced 167 DNA repair and eight PCa candidate genes in a UK-based cohort of 1281 young-onset PCa cases (diagnosed at ≤60 yr) and 1160 selected controls. Outcome measurements and statistical analysis Gene-level SKAT-O and gene-set adaptive combination of p values (ADA) analyses were performed separately for cases versus controls, and aggressive (Gleason score ≥8, n = 201) versus nonaggressive (Gleason score ≤7, n = 1048) cases. Results and limitations We identified 233 unique protein truncating variants (PTVs) with minor allele frequency <0.5% in controls in 97 genes. The total proportion of PTV carriers was higher in cases than in controls (15% vs 12%, odds ratio [OR] = 1.29, 95% confidence interval [CI] 1.01–1.64, p = 0.036). Gene-level analyses selected NBN (pSKAT-O = 2.4 × 10−4) for overall risk and XPC (pSKAT-O = 1.6 × 10−4) for aggressive disease, both at candidate-level significance (p < 3.1 × 10−4 and p < 3.4 × 10−4, respectively). Gene-set analysis identified a subset of 20 genes associated with increased PCa risk (OR = 3.2, 95% CI 2.1–4.8, pADA = 4.1 × 10−3) and four genes that increased risk of aggressive disease (OR = 11.2, 95% CI 4.6–27.7, pADA = 5.6 × 10−3), three of which overlap the predisposition gene set. Conclusions The union of the gene-level and gene-set-level analyses identified 23 unique DNA repair genes associated with PCa predisposition or risk of aggressive disease. These findings will help facilitate the development of a PCa-specific sequencing panel with both predictive and prognostic potential. Patient summary This large sequencing study assessed the rate of inherited DNA repair gene mutations between prostate cancer patients and disease-free men. A panel of 23 genes was identified, which may improve risk prediction or treatment pathways in future clinical practice

    Lower breast cancer survival in mothers of children with a malignancy: a national study

    Get PDF
    As it is unclear if hereditary factors affect breast cancer survival, this was compared using fertility and cancer registry data, among all women so diagnosed during 1961–1999 in Sweden, having a child with childhood cancer (⩽20 years of age; n=254) and with that of other women (n=74 781). Those having a child with a childhood malignancy had a significantly worse survival than other women, relative risk (RR)=1.25, 95% CI 1.02–1.55, P<0.04, adjusted for age at diagnosis, year of diagnosis, parity and time since last pregnancy. Childhood sarcomas or acute myeloid leukaemia seemed to be most associated with a worse survival in the mother (RR=1.38 and 1.69, respectively). The lower survival of the mother was present for breast cancer diagnosed both before and after 50 years of age. The Li–Fraumeni syndrome and possibly other genetic disorders may lower breast cancer survival
    • …
    corecore