39 research outputs found

    Data Selection for Unsupervised Translation of German--Upper Sorbian

    Get PDF
    This paper describes the methods behind the systems submitted by the University of Groningen for the WMT 2020 Unsupervised Machine Translation task for German--Upper Sorbian. We investigate the usefulness of data selection in the unsupervised setting. We find that we can perform data selection using a pretrained model and show that the quality of a set of sentences or documents can have a great impact on the performance of the UNMT system trained on it. Furthermore, we show that document-level data selection should be preferred for training the XLM model when possible. Finally, we show that there is a trade-off between quality and quantity of the data used to train UNMT systems

    Data Selection for Unsupervised Translation of German--Upper Sorbian

    Get PDF

    Data Selection for Unsupervised Translation of German--Upper Sorbian

    Get PDF

    Data Selection for Unsupervised Translation of German--Upper Sorbian

    Get PDF

    Patching Leaks in the Charformer for Efficient Character-Level Generation

    Get PDF
    Character-based representations have important advantages over subword-based ones for morphologically rich languages. They come with increased robustness to noisy input and do not need a separate tokenization step. However, they also have a crucial disadvantage: they notably increase the length of text sequences. The GBST method from Charformer groups (aka downsamples) characters to solve this, but allows information to leak when applied to a Transformer decoder. We solve this information leak issue, thereby enabling character grouping in the decoder. We show that Charformer downsampling has no apparent benefits in NMT over previous downsampling methods in terms of translation quality, however it can be trained roughly 30% faster. Promising performance on English--Turkish translation indicate the potential of character-level models for morphologically-rich languages

    Low-Resource Unsupervised NMT:Diagnosing the Problem and Providing a Linguistically Motivated Solution

    Get PDF
    Unsupervised Machine Translation hasbeen advancing our ability to translatewithout parallel data, but state-of-the-artmethods assume an abundance of mono-lingual data. This paper investigates thescenario where monolingual data is lim-ited as well, finding that current unsuper-vised methods suffer in performance un-der this stricter setting. We find that theperformance loss originates from the poorquality of the pretrained monolingual em-beddings, and we propose using linguis-tic information in the embedding train-ing scheme. To support this, we look attwo linguistic features that may help im-prove alignment quality: dependency in-formation and sub-word information. Us-ing dependency-based embeddings resultsin a complementary word representationwhich offers a boost in performance ofaround 1.5 BLEU points compared to stan-dardWORD2VECwhen monolingual datais limited to 1 million sentences per lan-guage. We also find that the inclusion ofsub-word information is crucial to improv-ing the quality of the embedding

    Neural Machine Translation for English–Kazakh with Morphological Segmentation and Synthetic Data

    Get PDF
    This paper presents the systems submitted by the University of Groningen to the English-Kazakh language pair (both translation directions) for the WMT 2019 news translation task. We explore the potential benefits of (i) morphological segmentation (both unsupervised and rule-based), given the agglutinative nature of Kazakh, (ii) data from two additional languages (Turkish and Russian), given the scarcity of English-Kazakh data and (iii) synthetic data, both for the source and for the target language. Our best sub- missions ranked second for Kazakh-English and third for English-Kazakh in terms of the BLEU automatic evaluation metric
    corecore