3,866 research outputs found
Avoided level crossing spectroscopy with dressed matter waves
We devise a method for probing resonances of macroscopic matter waves in
shaken optical lattices by monitoring their response to slow parameter changes,
and show that such resonances can be disabled by particular choices of the
driving amplitude. The theoretical analysis of this scheme reveals far-reaching
analogies between dressed atoms and time-periodically forced matter waves.Comment: 4 pages, 3 figure
Dressed matter waves
We suggest to view ultracold atoms in a time-periodically shifted optical
lattice as a "dressed matter wave", analogous to a dressed atom in an
electromagnetic field. A possible effect lending support to this concept is a
transition of ultracold bosonic atoms from a superfluid to a Mott-insulating
state in response to appropriate "dressing" achieved through time-periodic
lattice modulation. In order to observe this effect in a laboratory experiment,
one has to identify conditions allowing for effectively adiabatic motion of a
many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie
Quantum simulation of frustrated magnetism in triangular optical lattices
Magnetism plays a key role in modern technology as essential building block
of many devices used in daily life. Rich future prospects connected to
spintronics, next generation storage devices or superconductivity make it a
highly dynamical field of research. Despite those ongoing efforts, the
many-body dynamics of complex magnetism is far from being well understood on a
fundamental level. Especially the study of geometrically frustrated
configurations is challenging both theoretically and experimentally. Here we
present the first realization of a large scale quantum simulator for magnetism
including frustration. We use the motional degrees of freedom of atoms to
comprehensively simulate a magnetic system in a triangular lattice. Via a
specific modulation of the optical lattice, we can tune the couplings in
different directions independently, even from ferromagnetic to
antiferromagnetic. A major advantage of our approach is that standard
Bose-Einstein-condensate temperatures are sufficient to observe magnetic
phenomena like N\'eel order and spin frustration. We are able to study a very
rich phase diagram and even to observe spontaneous symmetry breaking caused by
frustration. In addition, the quantum states realized in our spin simulator are
yet unobserved superfluid phases with non-trivial long-range order and
staggered circulating plaquette currents, which break time reversal symmetry.
These findings open the route towards highly debated phases like spin-liquids
and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure
Clinical Correlates of High Cervical Fractional Anisotropy in Acute Cervical Spinal Cord Injury
Objective: Fractional anisotropy (FA) of the high cervical cord (C1-C2), rostral to the injury site, correlates with upper limb function in patients with chronic cervical spinal cord injury (SCI). In acute cervical SCI, this relationship has not been investigated. The objective of this study was to identify functional correlates of FA of the high cervical cord in a series of patients with acute cervical SCI.
Methods: Traumatic cervical SCI patients who underwent presurgical cervical spine diffusion tensor imaging at our institution were reviewed for this study. FA of the whole cord as well as the lateralcorticospinal tracts (CSTs) was calculated on axial images from C1-C2. Upper limb motor (C5-T1) and sensory (C2-T1) function scores were extracted from the admission American Spinal Injury Association (ASIA) examinations. Correlation analysis for FA with ASIA examinations was performed using a Pearson correlation.
Results: Twelve subjects (9 men, 3 women; mean age 54.7 ± 4.0 years) underwent cervical spine diffusion tensor imaging at a mean duration of 3.6 ± 0.9 days postinjury. No patient had cord compression or intramedullary T2-weighted hyperintensities within the C1-C2 segments. FA correlated with upper limb motor score (whole cord: r = 0.59, P = .04; CST: 0.67, P = .01) and the ASIA grade (whole cord: r = 0.61, P = .03; CST: r = 0.71, P = .009). No correlation was found between FA and sensory scores.
Conclusions: FA of the whole cervical cord as well as the CST, rostral to the injury site, is associated with preserved upper limb motor function as well as superior ASIA grades after acute cervical SCI. FA of the high cervical cord is a potential biomarker of neural injury after acute cervical SCI
Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice
The similarity between matter waves in periodic potential and solid-state
physics processes has triggered the interest in quantum simulation using
Bose-Fermi ultracold gases in optical lattices. The present work evidences the
similarity between electrons moving under the application of oscillating
electromagnetic fields and matter waves experiencing an optical lattice
modulated by a frequency difference, equivalent to a spatially shaken periodic
potential. We demonstrate that the tunneling properties of a Bose-Einstein
condensate in shaken periodic potentials can be precisely controlled. We take
additional crucial steps towards future applications of this method by proving
that the strong shaking of the optical lattice preserves the coherence of the
matter wavefunction and that the shaking parameters can be changed
adiabatically, even in the presence of interactions. We induce reversibly the
quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press
Superfluid-insulator transition in a periodically driven optical lattice
We demonstrate that the transition from a superfluid to a Mott insulator in
the Bose-Hubbard model can be induced by an oscillating force through an
effective renormalization of the tunneling matrix element. The mechanism
involves adiabatic following of Floquet states, and can be tested
experimentally with Bose-Einstein condensates in periodically driven optical
lattices. Its extension from small to very large systems yields nontrivial
information on the condensate dynamics.Comment: 4 pages, 4 figures, RevTe
Epitaxial growth of deposited amorphous layer by laser annealing
We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing
The Effect Of A Medical Decompression Protocol On The Use Of Antiemetics, Nasogastric Tube Usage And Diet Advance In Late Stage Cancer Patients With Functional Intestinal Obstruction
At the end of life, many patients suffer from a syndrome that simulates classic small bowel obstruction. The traditional approach to intestinal obstruction is relief of pressure in the gastrointestinal tract using mechanical methods such as naso-gastric tube insertion and suctioning. This relieves the distension of the hollow organs and thus the nausea.. Pharmacologic methods are also used in the care of these patients, however, there is debate as to which agents to use and when to use them. The Medical Decompression protocol is a non-invasive pharmacologic approach to this problem. It brings with it ease and economy of delivery, the ability to administer it in intravenous as well as oral form, and is a multi-agent protocol of tried and true drugs used at the end of life: 1/2 Metoclopramide, Dexamethasone, Diphenhydramine, and Pantoprazole Prior to initiating this intervention, patients and their families are educated and are aware that this intervention is most likely a temporary measure aimed at symptom relief, as well as an attempt to improve quality of life. Our sample contained 42 males and 62 females, with an average age of about 70 years. About 51% of participants received MD (n = 53). Results indicated that there was a statistically significant difference between the two groups related to days to progress diet. We propose that a pharmacologic method such as MD is strongly considered as first line treatments for the functional intestinal obstruction syndrome and indeed be considered as adjuncts to allow the removal of invasive mechanical interventions in the end of life patient
Diffusion Tensor Imaging Correlates with Short-Term Myelopathy Outcome in Patients with Cervical Spondylotic Myelopathy
Objective To determine if spinal cord diffusion tensor imaging indexes correlate with short-term clinical outcome in patients undergoing elective cervical spine surgery for cervical spondylotic myelopathy (CSM). Methods A prospective consecutive cohort study was performed in patients undergoing elective cervical spine surgery for CSM. After obtaining informed consent, patients with CSM underwent preoperative T2-weighted magnetic resonance imaging and diffusion tensor imaging of the cervical spine. Fractional anisotropy (FA) values at the level of maximum cord compression and at the noncompressed C1-2 level were calculated on axial images. We recorded the modified Japanese Orthopaedic Association (mJOA) scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores for all patients preoperatively and 3 months postoperatively. Statistical analysis was performed to identify correlations between FA and clinical outcome scores. Results The study included 27 patients (mean age 54.5 years ± 1.9, 12 men). The mean postoperative changes in mJOA scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores were 0.9 ± 0.3, −6.0 ± 1.9, and 3.4 ± 1.9. The mean FA at the level of maximum compression was significantly lower than the mean FA at the C1-2 level (0.5 vs. 0.55, P = 0.01). FA was significantly correlated with change in mJOA scale score (Pearson r = −0.42, P = 0.02). FA was significantly correlated with the preoperative mJOA scale score (Pearson r = 0.65, P \u3c 0.001). Conclusions Preoperative FA at the level of maximum cord compression significantly correlates with the 3-month change in mJOA scale score among patients with CSM. FA was also significantly associated with preoperative mJOA scale score and is a potential biomarker for spinal cord dysfunction in CSM
Ground state energy of a homogeneous Bose-Einstein condensate beyond Bogoliubov
The standard calculations of the ground-state energy of a homogeneous Bose
gas rely on approximations which are physically reasonable but difficult to
control. Lieb and Yngvason [Phys. Rev. Lett. 80, 2504 (1998)] have proved
rigorously that the commonly accepted leading order term of the ground state
energy is correct in the zero-density-limit. Here, strong indications are given
that also the next to leading term is correct. It is shown that the first terms
obtained in a perturbative treatment provide contributions which are lost in
the Bogoliubov approach.Comment: 6 pages, accepted for publication in Europhys. Lett.
http://www.epletters.ch
- …