1,243 research outputs found

    Magnetic moment of an electron near a surface with dispersion

    Get PDF
    Boundary-dependent radiative corrections that modify the magnetic moment of an electron near a dielectric or conducting surface are investigated. Normal-mode quantization of the electromagnetic field and perturbation theory applied to the Dirac equation for a charged particle in a weak magnetic field yield a general formula for the magnetic moment correction in terms of any choice of electromagnetic mode functions. For two particular models, a non-dispersive dielectric and an undamped plasma, it is shown that, by using contour integration techniques over a complex wave vector, this can be simplified to a formula featuring just integrals over TE and TM reflection coefficients of the surface. Analysing the magnetic moment correction for several models of surfaces, we obtain markedly different results from the previously considered simplistic 'perfect reflector' model, which is due to the inclusion of physically important features of the surface like evanescent field modes and dispersion in the material. Remarkably, for a general dispersive dielectric surface, the magnetic moment correction of an electron nearby has a peak whose position and height can be tuned by choice of material parameters

    Option pricing in affine generalized Merton models

    Get PDF
    In this article we consider affine generalizations of the Merton jump diffusion model [Merton, J. Fin. Econ., 1976] and the respective pricing of European options. On the one hand, the Brownian motion part in the Merton model may be generalized to a log-Heston model, and on the other hand, the jump part may be generalized to an affine process with possibly state dependent jumps. While the characteristic function of the log-Heston component is known in closed form, the characteristic function of the second component may be unknown explicitly. For the latter component we propose an approximation procedure based on the method introduced in [Belomestny et al., J. Func. Anal., 2009]. We conclude with some numerical examples

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure

    Quantum Electrodynamics near a Dielectric Half-space

    Get PDF
    We determine the photon propagator in the presence of a non-dispersive dielectric half-space and use it to calculate the self-energy of an electron near a dielectric surface

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure

    Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions

    Get PDF
    We calculate the critical rotation frequency at which a vortex state becomes energetically favorable over the vortex-free ground state in a harmonically trapped Bose-Einstein condensate whose atoms have dipole-dipole interactions as well as the usual s-wave contact interactions. In the Thomas-Fermi (hydrodynamic) regime, dipolar condensates in oblate cylindrical traps (with the dipoles aligned along the axis of symmetry of the trap) tend to have lower critical rotation frequencies than their purely s-wave contact interaction counterparts. The converse is true for dipolar condensates in prolate traps. Quadrupole excitations and centre of mass motion are also briefly discussed as possible competing mechanisms to a vortex as means by which superfluids with partially attractive interactions might carry angular momentumComment: 12 pages, 12 figure

    Quantum Electrodynamics near a Huttner-Barnett dielectric

    Get PDF
    We build up a consistent theory of quantum electrodynamics in the presence of macroscopic polarizable media. We use the Huttner-Barnett model of a dispersive and absorbing dielectric medium and formulate the theory in terms of interacting quantum fields. We integrate out the damped polaritons by using diagrammatic techniques and find an exact expression for the displacement field (photon) propagator in the presence of a dispersive and absorbing dielectric half-space. This opens a new route to traceable perturbative calculations of the same kind as in free-space quantum electrodynamics. As a worked-through example we consider the interaction of a neutral atom with a dispersive and absorbing dielectric half-space. For that we use the multipolar coupling μD\boldsymbol{\mu}\cdot\mathbf{D} of the atomic dipole moment to the electromagnetic displacement field. We apply the newly developed formalism to calculate the one-loop correction to the atomic electron propagator and find the energy-level shift and changes in the spontaneous decay rates for a neutral atom close to an absorptive dielectric mirror.Comment: 25 pages, 4 figure

    Force on a neutral atom near conducting microstructures

    Get PDF
    We derive the non-retarded energy shift of a neutral atom for two different geometries. For an atom close to a cylindrical wire we find an integral representation for the energy shift, give asymptotic expressions, and interpolate numerically. For an atom close to a semi-infinite halfplane we determine the exact Green's function of the Laplace equation and use it derive the exact energy shift for an arbitrary position of the atom. These results can be used to estimate the energy shift of an atom close to etched microstructures that protrude from substrates.Comment: 7 pages, 5 figure

    Constraints on non-universal soft terms from flavor changing neutral currents

    Get PDF
    The smallness of flavor changing neutral currents constrains the soft parameter space of supersymmetric extensions of the Standard Model. These low energy constraints are translated to the soft parameter space generated at some high energy scale \Mgut. For gaugino masses larger than the scalar masses and non-universal AA-terms the constraints are significantly diluted at \Mgut and do allow for the possibility of non-universal scalar masses. The strongest constraints arise in the slepton sector of the theory.Comment: 15 pages (harvmac) and 5 figures (uuencoded), MPI-PhT/94-5

    Entropy of semiclassical measures for nonpositively curved surfaces

    Full text link
    We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface of nonpositive sectional curvature. We show that the Kolmogorov-Sinai entropy of a semiclassical measure for the geodesic flow is bounded from below by half of the Ruelle upper bound. We follow the same main strategy as in the Anosov case (arXiv:0809.0230). We focus on the main differences and refer the reader to (arXiv:0809.0230) for the details of analogous lemmas.Comment: 20 pages. This note provides a detailed proof of a result announced in appendix A of a previous work (arXiv:0809.0230, version 2
    corecore