5 research outputs found

    Cortical circuits underlying social and spatial exploration in rats

    Get PDF
    Um zu verstehen, wie das Gehirn von SĂ€ugetieren funktioniert, untersuchen wir wie neuronale AktivitĂ€t einerseits zu Kognition betrĂ€gt und andererseits komplexe Verhaltensweisen ermöglicht. Im Fokus dieser Doktorarbeit stehen dabei zwei Regionen der Großhirnrinde der Ratte: der parahippocampale Cortex und der motorische Cortex. Im ersten Teil haben wir neuronale Schaltkreise im parahippocampalen Cortex und in den oberen Schichten des enthorhinalen Cortex untersucht, wĂ€hrend Ratten ihre Umgebung rĂ€umlich erkunden. Diese beiden Regionen tragen wesentlich zum Orientierungssinn bei. Dabei haben wir herausgefunden, dass anatomische IdentitĂ€t und Einbindung in den Microschaltkreis einerseits rĂ€umliche neuronale Signale, wie zum Beispiel der AktivitĂ€t von grid cells, border cells und head-direction cells, bestimmen. Andererseits tragen diese beiden Eigenschaften auch zur temporalen PrĂ€zision neuronaler Signale bei, wie zum Beispiel in Form von spike bursts, theta Modulation und phase precession. Im zweiten Teil dieser Doktorarbeit untersuchen wir die AktivitĂ€t von Neuronen im Vibrissen Motorcortex wĂ€hrend komplexer BewegungsablĂ€ufe der Schnurrhaare, die dem natĂŒrlichen Repertoire der Ratte entstammen: eigeninitiierte Bewegungen in freier Luft, BerĂŒhrung von Artgenossen zur sozialen Interaktion und das Abtasten von Objekten. Dabei haben wir herausgefunden, dass neuronale AktivitĂ€t im Motorcortex wĂ€hrend der Bewegung der Schnurrhaare unterdrĂŒckt ist, dass elektrische Microstimulation zum RĂŒckzug der Schnurrhaare fĂŒhrt und, dass pharmakologische Blockade Bewegung der Schnurrhaare fördert. Um diese ĂŒberraschende Beobachtung in einen breiteren Kontext zu integrieren, endet dieser Teil mit einer Bewertung der Literatur zu der bewegungsunterdrĂŒckenden Wirkung von Motorcortex AktivitĂ€t bei Nagetieren, Primaten und Menschen.In order to understand how the mammalian brain works, we must investigate how neural activity contributes to cognition and generates complex behavioral output. In this thesis I present work, which focuses on two regions of the cerebral cortex of rats: parahippocampal cortex and motor cortex. In the first part of the thesis we investigate neural circuits in the parasubiculum and the superficial medial enthorhinal cortex, two structures that play a key role in spatial cognition. Briefly, we find that the in these regions, anatomical identity and microcircuit embedding is a major determinant of both spatial discharge patterns (such as the discharge patterns of grid cells, border cells and head-direction cells) and temporal coding features (such as spike bursts, theta-modulation and phase precession). In the second part of the thesis we investigate the activity of neurons in vibrissa motor cortex during complex motor behaviors, which play a vital role in rat ecology: self-initiated bouts of exploratory whisking in air, whisking to touch conspecifics during social interactions and whisking to palpate objects. Briefly, we find that neural activity decreases during whisking behaviors, that microstimulation leads to whisker retraction and that pharmacological blockade increases whisker movement. Thus, our observations collectively suggest that a primary role of vibrissa motor cortex activity is to suppress whisking behaviors. The second part of the thesis concludes with a literature review of motor suppressive effects of motor cortical activity across rodents, primates and humans to put this unexpected finding in a broader context

    Flawed estimates of cognitive ability in Clark et al. Psychological Science, 2020

    No full text
    In a recent paper, Clark et al. (2020) analyze the relationship between socio-economic measures and estimates of average cognitive ability (’IQ’) in 140 countries. According to the data presented by the authors, several African, South Asian and Central American countries have an average IQ below 50 (i.e. intellectually disabled, according to DSM diagnostic criteria). Moreover, according to the data presented by the authors, the average cognitive ability of adults in African nations is ∌1.6 standard deviations below the cognitive ability of European adults. These notions are incompatible with psychological science and all conclusions drawn from these data are invalid

    Cell Type-Specific Differences in Spike Timing and Spike Shape in the Rat Parasubiculum and Superficial Medial Entorhinal Cortex

    Get PDF
    The medial entorhinal cortex (MEC) and the adjacent parasubiculum are known for their elaborate spatial discharges (grid cells, border cells, etc.) and the precessing of spikes relative to the local field potential. We know little, however, about how spatio-temporal firing patterns map onto cell types. We find that cell type is a major determinant of spatio-temporal discharge properties. Parasubicular neurons and MEC layer 2 (L2) pyramids have shorter spikes, discharge spikes in bursts, and are theta-modulated (rhythmic, locking, skipping), but spikes phase-precess only weakly. MEC L2 stellates and layer 3 (L3) neurons have longer spikes, do not discharge in bursts, and are weakly theta-modulated (non-rhythmic, weakly locking, rarely skipping), but spikes steeply phase-precess. The similarities between MEC L3 neurons and MEC L2 stellates on one hand and parasubicular neurons and MEC L2 pyramids on the other hand suggest two distinct streams of temporal coding in the parahippocampal cortex

    Motor cortex — to act or not to act?

    No full text
    corecore