21 research outputs found

    Satellite Swarms for Narrow Beamwidth Applications

    Get PDF
    peer reviewedSatellite swarms have recently gained attention in the space industry due to their ability to provide extremely narrow beamwidths at a lower cost than single satellite systems. This paper proposes a concept for a satellite swarm using a distributed subarray configuration based on a 2D normal probability distribution. The swarm comprises multiple small satellites acting as subarrays of a big aperture array limited by a radius of 20000λ 0 working at a central frequency of 19 GHz. The main advantage of this approach is that the distributed subarrays can provide extremely directive beams and beamforming capabilities that are not possible using a conventional antenna and satellite design. The proposed swarm concept is analyzed, and the simulation results show that the radiation pattern achieves a beamwidth as narrow as 0.0015° with a maximum side lobe level of 18.8 dB and a grating lobe level of 14.8 dB. This concept can be used for high data rates applications or emergency systems.9. Industry, innovation and infrastructur

    Energy-Efficient On-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing

    Full text link
    The latest satellite communication (SatCom) missions are characterized by a fully reconfigurable on-board software-defined payload, capable of adapting radio resources to the temporal and spatial variations of the system traffic. As pure optimization-based solutions have shown to be computationally tedious and to lack flexibility, machine learning (ML)-based methods have emerged as promising alternatives. We investigate the application of energy-efficient brain-inspired ML models for on-board radio resource management. Apart from software simulation, we report extensive experimental results leveraging the recently released Intel Loihi 2 chip. To benchmark the performance of the proposed model, we implement conventional convolutional neural networks (CNN) on a Xilinx Versal VCK5000, and provide a detailed comparison of accuracy, precision, recall, and energy efficiency for different traffic demands. Most notably, for relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100×\times as compared to the CNN-based reference platform. Our findings point to the significant potential of neuromorphic computing and SNNs in supporting on-board SatCom operations, paving the way for enhanced efficiency and sustainability in future SatCom systems.Comment: currently under review at IEEE Transactions on Machine Learning in Communications and Networkin

    Edge AI Empowered Physical Layer Security for 6G NTN: Potential Threats and Future Opportunities

    Full text link
    Due to the enormous potential for economic profit offered by artificial intelligence (AI) servers, the field of cybersecurity has the potential to emerge as a prominent arena for competition among corporations and governments on a global scale. One of the prospective applications that stands to gain from the utilization of AI technology is the advancement in the field of cybersecurity. To this end, this paper provides an overview of the possible risks that the physical layer may encounter in the context of 6G Non-Terrestrial Networks (NTN). With the objective of showcasing the effectiveness of cutting-edge AI technologies in bolstering physical layer security, this study reviews the most foreseeable design strategies associated with the integration of edge AI in the realm of 6G NTN. The findings of this paper provide some insights and serve as a foundation for future investigations aimed at enhancing the physical layer security of edge servers/devices in the next generation of trustworthy 6G telecommunication networks.Comment: 7 pages, 6 figures, magazin

    Performance Evaluation of Neuromorphic Hardware for Onboard Satellite Communication Applications

    Full text link
    Spiking neural networks (SNNs) implemented on neuromorphic processors (NPs) can enhance the energy efficiency of deployments of artificial intelligence (AI) for specific workloads. As such, NP represents an interesting opportunity for implementing AI tasks on board power-limited satellite communication spacecraft. In this article, we disseminate the findings of a recently completed study which targeted the comparison in terms of performance and power-consumption of different satellite communication use cases implemented on standard AI accelerators and on NPs. In particular, the article describes three prominent use cases, namely payload resource optimization, onboard interference detection and classification, and dynamic receive beamforming; and compare the performance of conventional convolutional neural networks (CNNs) implemented on Xilinx's VCK5000 Versal development card and SNNs on Intel's neuromorphic chip Loihi 2.Comment: submitted to IEEE Commun. Magazin

    On the Performance of Cache-Free/Cache-Aided STBC-NOMA in Cognitive Hybrid Satellite-Terrestrial Networks

    Get PDF
    Future wireless networks pose several challenges such as high spectral efficiency, wide coverage massive connectivity, low receiver complexity, etc. To this end, this letter investigates an overlay based cognitive hybrid satellite-terrestrial network (CHSTN) combining non-orthogonal multiple access (NOMA) and conventional Alamouti space-time block coding (STBC) techniques. Herein, a decode-and-forward based secondary terrestrial network cooperates with a primary satellite network for dynamic spectrum access. Further, for reliable content delivery and low latency requirements, wireless caching is employed, whereby the secondary network can store the most popular contents of the primary network. Considering the relevant heterogeneous fading channel models and the NOMA-based imperfect successive interference cancellation, we examine the performance of CHSTN for the cache-free (CF) STBC-NOMA and the cache-aided (CA) STBC-NOMA schemes. We assess the outage probability expressions for primary and secondary networks and further, highlight the corresponding achievable diversity orders. Indicatively, the proposed CF/CA STBC-NOMA schemes for CHSTN perform significantly better than the benchmark standalone NOMA and OMA schemes

    User-Centric Beam Selection and Precoding Design for Coordinated Multiple-Satellite Systems

    Full text link
    This paper introduces a joint optimization framework for user-centric beam selection and linear precoding (LP) design in a coordinated multiple-satellite (CoMSat) system, employing a Digital-Fourier-Transform-based (DFT) beamforming (BF) technique. Regarding serving users at their target SINRs and minimizing the total transmit power, the scheme aims to efficiently determine satellites for users to associate with and activate the best cluster of beams together with optimizing LP for every satellite-to-user transmission. These technical objectives are first framed as a complex mixed-integer programming (MIP) challenge. To tackle this, we reformulate it into a joint cluster association and LP design problem. Then, by theoretically analyzing the duality relationship between downlink and uplink transmissions, we develop an efficient iterative method to identify the optimal solution. Additionally, a simpler duality approach for rapid beam selection and LP design is presented for comparison purposes. Simulation results underscore the effectiveness of our proposed schemes across various settings

    Satellite Adaptive Onboard Beamforming Using Neuromorphic Processors

    Get PDF
    peer reviewedU-AGR-7111 - C21/IS/16193290/SmartSpace - LAGUNAS Ev

    User-Centric Beam Selection and Precoding Design for Coordinated Multiple-Satellite Systems

    Get PDF
    peer reviewedThis paper introduces a joint optimization framework for user-centric beam selection and linear precoding (LP) design in a coordinated multiple-satellite (CoMSat) system, employing a Digital-Fourier-Transform-based (DFT) beamforming (BF) technique. Regarding serving users at their target SINRs and minimizing the total transmit power, the scheme aims to efficiently determine satellites for users to associate with and activate the best cluster of beams together with optimizing LP for every satellite-to-user transmission. These technical objectives are first framed as a complex mixed-integer programming (MIP) challenge. To tackle this, we reformulate it into a joint cluster association and LP design problem. Then, by theoretically analyzing the duality relationship between downlink and uplink transmissions, we develop an efficient iterative method to identify the optimal solution. Additionally, a simpler duality approach for rapid beam selection and LP design is presented for comparison purposes. Simulation results underscore the effectiveness of our proposed schemes across various settings

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed
    corecore