22 research outputs found
Oscillating grid generating turbulence near gas-liquid interfaces in shear-thinning dilute polymer solutions
Understanding the behavior of liquid phase turbulence near gas-liquid interfaces is of great interest in many fundamental, environmental, or industrial applications. For example, near-surface liquid side turbulence is known to enhance the mass transfers between the two phases. Descriptions of this behavior for air-water systems exist in the literature, but the case of turbulence in a shear-thinning liquid phase below a flat gas-liquid interface has never been considered to the best of our knowledge. This paper consists in an experimental characterization of low Reynolds number, oscillating grid generated, near-surface turbulence in shear-thinning dilute polymer solutions, in the surface-influenced and in the viscous sublayers. The energy transfer mechanism, known in the water case, is evidenced in dilute polymer solutions. A horizontal damping mechanism, similar to the one introduced by surfactants, is evidenced. The evolution of the viscous sublayer depth can be explained by both viscous and shear-thinning effects, and it appears that a critical polymer concentration may exist within the dilute regime
POD analysis of oscillating grid turbulence in water and shear thinning polymer solution
Oscillating grids are frequently used with water and Newtonian fluids to generate controlled turbulence and mixing. Yet, their use with shear thinning fluids still requires experimental characterization. Proper orthogonal decomposition (POD) is applied to PIV measurements of the flow generated by an oscillating grid in water and a shear thinning dilute polymer solution (DPS) of xanthan gum. The aims are to investigate the ability of POD to isolate periodic flow structures, and to use it to describe the effects of the shear thinning property. A dominance of the low order POD modes is evidenced in DPS. The methods applied in blade stirred tanks to identify oscillatory motion fail here. However, a strong mode coupling in the grid swept region is observed, determined by the working fluid and by an underlying chaotic nature of the flow. Possibilities of reconstructing turbulence properties using high order modes are discussed
Oscillating grid turbulence in shear-thinning polymer solutions
Oscillating grid apparatuses are well known and convenient tools for the fundamental study of turbulence and its interaction with other phenomena since they allow to generate turbulence supposedly homogeneous, isotropic, and free of mean shear. They could, in particular, be used to study turbulence and mass transfer near the interface between non-Newtonian liquids and a gas, as already done in air-water situations. Although frequently used in water and Newtonian fluids, oscillating grid turbulence (OGT) generation has yet been rarely applied and never characterized in non-Newtonian media. The present work consists of a first experimental characterization of the flow properties of shear-thinning polymer (Xanthan Gum, XG) solutions stirred by an oscillating grid. Various polymer concentrations are tested for a single grid stirring condition. The dilute and semidilute entanglement concentration regimes are considered. Liquid phase velocities are measured by Particle Image Velocimetry. The existing mean flow established in the tank is described and characterized, as well as turbulence properties (intensity, decay rate, length scales, isotropy, etc.). OGT in dilute polymer solutions induces an enhanced mean flow compared to water, a similar decay behavior with yet different decay rates, and enhanced turbulence large scales and anisotropy. In the semidilute regime of XG, turbulence and mean flows are essentially damped by viscosity. The evolution of mean flow and turbulence indicators leads to the definition of several polymer concentration subregimes, within the dilute one. Critical concentrations around 20 ppm and 50 ppm are found, comparable to drag reduction characteristic concentrations
Etude expérimentale et numérique de la topologie d'une interface gaz/liquide
La topologie interfaciale d'une poche de gaz de grand allongement soumise à un écoulement liquide permanent et immobilisée en amont d'un obstacle, est étudiée expérimentalement et numériquement. Les ondes figées apparaissent dans une zone limitée de l'interface lorsque le nombre de Reynolds est suffisamment important (Re > 16000). Au-delà de ces valeurs de Re, leur longueur d'onde diminue progressivement. Ce comportement peut être expliqué par un modèle basé sur la théorie irrotationnelle des ondes en eau profonde. Il montre que les ondes figées sont générées par la présence de l'obstacle. Il permet également de prédire que les effets capillaires prédominent sur les effets gravitaires. Ceci est particulièrement valable pour Re > 20000. En revanche, la modélisation numérique ne prédit l'existence que d'une seule zone interfaciale, siège d'ondes progressives dont la longueur d'onde correspond à la longueur caractéristique des recirculations au sein de la poche
D. Brewer, The Discourse of Enlightenment in Eighteenth- Century France. Diderot and the Art of Philosophizing
Meyer Paul Hugo. D. Brewer, The Discourse of Enlightenment in Eighteenth- Century France. Diderot and the Art of Philosophizing. In: Recherches sur Diderot et sur l'Encyclopédie, n°16, 1994. pp. 162-164
PTV measurements of oscillating grid turbulence in water and polymer solutions
Particle Tracking Velocimetry (PTV) is applied to measure the flow in an oscillating grid stirred tank filled with either water or shear thinning dilute polymer solutions (DPS) of Xanthan Gum (XG). There are many interests of studying turbulence in such complex non-Newtonian fluids (e.g. in the pharmaceutical, cosmetic, or food industry), and grid stirred tanks are commonly used for fundamental studies of turbulence in Newtonian fluids. Yet the case of oscillating grid flows in shear thinning solutions has been addressed recently by Lacassagne et al. (Exp Fluids 61(1):15, Phys Fluids 31(8):083102, 2019a, b), with only a single two dimensional (2D) Particle Image Velocimetry (PIV) characterization of mean flow and turbulence properties in the central vertical plane of the tank. Here, PTV data processed by the Shake The Box algorithm allows for the time resolved, three dimensional (3D) 3 components (3C) measurement of Lagrangian velocities for a large number of tracked particles in a central volume of interest of the tank. The possibility of projecting this Lagrangian information on an Eulerian grid is explored, and projected Eulerian results are compared with 2D PIV data from the previous work. Even if the mean flow is difficult to reproduce at the lowest polymer concentrations, a good agreement is found between measured turbulent decay laws, thus endorsing the use of this 3D-PTV metrology for the study of oscillating grid turbulence in DPS. The many possibilities of further analysis offered by the 3D3C nature of the data, either in the original Lagrangian form or in the projected Eulerian one, are finally discussed
The Flow Rate Influence on the Interaction of a Radial Pump Impeller and the Diffuser
This article presents the results of a detailed flow investigation within a centrifugal pump equipped with a vaned diffuser. The measurements were made with a laser Doppler velocimeter and were carried out at different operating points. The flow was investigated for different rotor–stator relative positions