185 research outputs found

    Novel technologies and emerging biomarkers for personalized cancer immunotherapy

    Get PDF
    The culmination of over a century's work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al

    Discrepant comorbidity between minority and white suicides: a national multiple cause-of-death analysis

    Get PDF
    Abstract Background Clinician training deficits and a low and declining autopsy rate adversely impact the quality of death certificates in the United States. Self-report and records data for the general population indicate that proximate mental and physical health of minority suicides was at least as poor as that of white suicides. Methods This cross-sectional mortality study uses data from Multiple Cause-of-Death (MCOD) public use files for 1999–2003 to describe and evaluate comorbidity among black, Hispanic, and white suicides. Unintentional injury decedents are the referent for multivariate analyses. Results One or more mentions of comorbid psychopathology are documented on the death certificates of 8% of white male suicides compared to 4% and 3% of black and Hispanic counterparts, respectively. Corresponding female figures are 10%, 8%, and 6%. Racial-ethnic discrepancies in the prevalence of comorbid physical disease are more attenuated. Cross-validation with National Violent Death Reporting System data reveals high relative underenumeration of comorbid depression/mood disorders and high relative overenumeration of schizophrenia on the death certificates of both minorities. In all three racial-ethnic groups, suicide is positively associated with depression/mood disorders [whites: adjusted odds ratio (AOR) = 31.9, 95% CI = 29.80–34.13; blacks: AOR = 60.9, 95% CI = 42.80–86.63; Hispanics: AOR = 34.7, 95% CI = 23.36–51.62] and schizophrenia [whites: AOR = 2.4, 95% CI = 2.07–2.86; blacks: AOR = 4.2, 95% CI = 2.73–6.37; Hispanics: AOR = 4.1, 95% CI = 2.01–8.22]. Suicide is positively associated with cancer in whites [AOR = 1.8, 95% CI = 1.69–1.93] and blacks [AOR = 1.8, 95% CI = 1.36–2.48], but not with HIV or alcohol and other substance use disorders in any group under review. Conclusion The multivariate analyses indicate high consistency in predicting suicide-associated comorbidities across racial-ethnic groups using MCOD data. However, low prevalence of documented comorbid psychopathology in suicides, and concomitant racial-ethnic discrepancies underscore the need for training in death certification, and routinization and standardization of timely psychological autopsies in all cases of suicide, suspected suicide, and other traumatic deaths of equivocal cause

    Race/ethnicity and potential suicide misclassification: window on a minority suicide paradox?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suicide officially kills approximately 30,000 annually in the United States. Analysis of this leading public health problem is complicated by undercounting. Despite persisting socioeconomic and health disparities, non-Hispanic Blacks and Hispanics register suicide rates less than half that of non-Hispanic Whites.</p> <p>Methods</p> <p>This cross-sectional study uses multiple cause-of-death data from the US National Center for Health Statistics to assess whether race/ethnicity, psychiatric comorbidity documentation, and other decedent characteristics were associated with differential potential for suicide misclassification. Subjects were 105,946 White, Black, and Hispanic residents aged 15 years and older, dying in the US between 2003 and 2005, whose manner of death was recorded as suicide or injury of undetermined intent. The main outcome measure was the relative odds of potential suicide misclassification, a binary measure of manner of death: injury of undetermined intent (includes misclassified suicides) versus suicide.</p> <p>Results</p> <p>Blacks (adjusted odds ratio [AOR], 2.38; 95% confidence interval [CI], 2.22-2.57) and Hispanics (1.17, 1.07-1.28) manifested excess potential suicide misclassification relative to Whites. Decedents aged 35-54 (AOR, 0.88; 95% CI, 0.84-0.93), 55-74 (0.52, 0.49-0.57), and 75+ years (0.51, 0.46-0.57) showed diminished misclassification potential relative to decedents aged 15-34, while decedents with 0-8 years (1.82, 1.75-1.90) and 9-12 years of education (1.43, 1.40-1.46) showed excess potential relative to the most educated (13+ years). Excess potential suicide misclassification was also apparent for decedents without (AOR, 3.12; 95% CI, 2.78-3.51) versus those with psychiatric comorbidity documented on their death certificates, and for decedents whose mode of injury was "less active" (46.33; 43.32-49.55) versus "more active."</p> <p>Conclusions</p> <p>Data disparities might explain much of the Black-White suicide rate gap, if not the Hispanic-White gap. Ameliorative action would extend from training in death certification to routine use of psychological autopsies in equivocal-manner-of-death cases.</p

    Efficacy of Fumaric Acid Esters in the R6/2 and YAC128 Models of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disease. The exact sequel of events finally resulting in neurodegeneration is only partially understood and there is no established protective treatment so far. Some lines of evidence speak for the contribution of oxidative stress to neuronal tissue damage. The fumaric acid ester dimethylfumarate (DMF) is a new disease modifying therapy currently in phase III studies for relapsing-remitting multiple sclerosis. DMF potentially exerts neuroprotective effects via induction of the transcription factor “nuclear factor E2-related factor 2” (Nrf2) and detoxification pathways. Thus, we investigated here the therapeutic efficacy of DMF in R6/2 and YAC128 HD transgenic mice which mimic many aspects of HD and are characterized by an enhanced generation of free radicals in neurons. Treatment with DMF significantly prevented weight loss in R6/2 mice between postnatal days 80–90. At the same time, DMF treatment led to an attenuated motor impairment as measured by the clasping score. Average survival in the DMF group was 100.5 days vs. 94.0 days in the placebo group. In the histological analysis on day 80, DMF treatment resulted in a significant preservation of morphologically intact neurons in the striatum as well as in the motor cortex. DMF treatment resulted in an increased Nrf2 immunoreactivity in neuronal subpopulations, but not in astrocytes. These beneficial effects were corroborated in YAC128 mice which, after one year of DMF treatment, also displayed reduced dyskinesia as well as a preservation of neurons. In conclusion, DMF may exert beneficial effects in mouse models of HD. Given its excellent side effect profile, further studies with DMF as new therapeutic approach in HD and other neurodegenerative diseases are warranted

    Genetic Knock-Down of Hdac3 Does Not Modify Disease-Related Phenotypes in a Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expansion of a CAG/polyglutamine repeat for which there are no disease modifying treatments. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression and has been recapitulated across multiple HD models. Altered histone acetylation has been proposed to underlie this transcriptional dysregulation and histone deacetylase (HDAC) inhibitors, such as suberoylanilide hydroxamic acid (SAHA), have been shown to improve polyglutamine-dependent phenotypes in numerous HD models. However potent pan-HDAC inhibitors such as SAHA display toxic side-effects. To better understand the mechanism underlying this potential therapeutic benefit and to dissociate the beneficial and toxic effects of SAHA, we set out to identify the specific HDAC(s) involved in this process. For this purpose, we are exploring the effect of the genetic reduction of specific HDACs on HD-related phenotypes in the R6/2 mouse model of HD. The study presented here focuses on HDAC3, which, as a class I HDAC, is one of the preferred targets of SAHA and is directly involved in histone deacetylation. To evaluate a potential benefit of Hdac3 genetic reduction in R6/2, we generated a mouse carrying a critical deletion in the Hdac3 gene. We confirmed that the complete knock-out of Hdac3 is embryonic lethal. To test the effects of HDAC3 inhibition, we used Hdac3+/− heterozygotes to reduce nuclear HDAC3 levels in R6/2 mice. We found that Hdac3 knock-down does not ameliorate physiological or behavioural phenotypes and has no effect on molecular changes including dysregulated transcripts. We conclude that HDAC3 should not be considered as the major mediator of the beneficial effect induced by SAHA and other HDAC inhibitors in HD

    Laminin γ1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16–F10 mouse melanoma cells

    Get PDF
    Laminin-1, a heterotrimer of α1, β1, and γ1 chains specific to basement membrane, promotes cell adhesion and migration, proteinase secretion and metastases of tumour cells. Several active sites on the α1 chain have been found to promote B16–F10 melanoma lung colonisation and here we have determined whether additional tumour promoting sites exist on the β1 and γ1 chains. Recently, we have identified novel cell adhesive peptides derived from laminin β1 and γ1 chains by systematic screening of synthetic peptides. Nine β1 peptides and seven γ1 peptides active for cell adhesion were tested for their effects on experimental pulmonary metastases of B16–F10 mouse melanoma cells in vivo. The most active adhesive peptide derived from the γ1 chain globular domain, C-16 (KAFDITYVRLKF), significantly enhanced pulmonary metastases of B16–F10 cells, whereas no other peptides showed enhancement. C-16 also stimulated migration of B16–F10 cells in the Boyden chamber assay in vitro. Furthermore, C-16 significantly induced the production of MMP-9 from B16–F10 cells. These results suggest that this specific laminin γ1 chain peptide has a metastasis-promoting activity and might be a new molecular target of anti-cancer treatment

    Comparison of quality-of-care measures in U.S. patients with end-stage renal disease secondary to lupus nephritis vs. other causes

    Get PDF
    BACKGROUND: Patients with end-stage renal disease (ESRD) due to lupus nephritis (LN-ESRD) may be followed by multiple providers (nephrologists and rheumatologists) and have greater opportunities to receive recommended ESRD-related care. We aimed to examine whether LN-ESRD patients have better quality of ESRD care compared to other ESRD patients. METHODS: Among incident patients (7/05–9/11) with ESRD due to LN (n = 6,594) vs. other causes (n = 617,758), identified using a national surveillance cohort (United States Renal Data System), we determined the association between attributed cause of ESRD and quality-of-care measures (pre-ESRD nephrology care, placement on the deceased donor kidney transplant waitlist, and placement of permanent vascular access). Multivariable logistic and Cox proportional hazards models were used to estimate adjusted odds ratios (ORs) and hazard ratios (HRs). RESULTS: LN-ESRD patients were more likely than other ESRD patients to receive pre-ESRD care (71% vs. 66%; OR = 1.68, 95% CI 1.57-1.78) and be placed on the transplant waitlist in the first year (206 vs. 86 per 1000 patient-years; HR = 1.42, 95% CI 1.34–1.52). However, only 24% had a permanent vascular access (fistula or graft) in place at dialysis start (vs. 36%; OR = 0.63, 95% CI 0.59–0.67). CONCLUSIONS: LN-ESRD patients are more likely to receive pre-ESRD care and have better access to transplant, but are less likely to have a permanent vascular access for dialysis, than other ESRD patients. Further studies are warranted to examine barriers to permanent vascular access placement, as well as morbidity and mortality associated with temporary access, in patients with LN-ESRD

    Decreased Striatal RGS2 Expression Is Neuroprotective in Huntington's Disease (HD) and Exemplifies a Compensatory Aspect of HD-Induced Gene Regulation

    Get PDF
    The molecular phenotype of Huntington's disease (HD) is known to comprise highly reproducible changes in gene expression involving striatal signaling genes. Here we test whether individual changes in striatal gene expression are capable of mitigating HD-related neurotoxicity.We used protein-encoding and shRNA-expressing lentiviral vectors to evaluate the effects of RGS2, RASD2, STEP and NNAT downregulation in HD. Of these four genes, only RGS2 and RASD2 modified mutant htt fragment toxicity in cultured rat primary striatal neurons. In both cases, disease modulation was in the opposite of the predicted direction: whereas decreased expression of RGS2 and RASD2 was associated with the HD condition, restoring expression enhanced degeneration of striatal cells. Conversely, silencing of RGS2 or RASD2 enhanced disease-related changes in gene expression and resulted in significant neuroprotection. These results indicate that RGS2 and RASD2 downregulation comprises a compensatory response that allows neurons to better tolerate huntingtin toxicity. Assessment of the possible mechanism of RGS2-mediated neuroprotection showed that RGS2 downregulation enhanced ERK activation. These results establish a novel link between the inhibition of RGS2 and neuroprotective modulation of ERK activity.Our findings both identify RGS2 downregulation as a novel compensatory response in HD neurons and suggest that RGS2 inhibition might be considered as an innovative target for neuroprotective drug development
    corecore