667 research outputs found

    DNA DSB repair pathway choice: an orchestrated handover mechanism

    Get PDF
    DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predominantly uses a sister chromatid as a template for DSB repair; thus HR functions only in late S/G2 phase. Here, we review current insight into the interplay between HR and NHEJ in G2 phase. We argue that NHEJ represents the first choice pathway, repairing approximately 80% of X-ray-induced DSBs with rapid kinetics. However, a subset of DSBs undergoes end resection and repair by HR. 53BP1 restricts resection, thereby promoting NHEJ. During the switch fromNHEJ to HR, 53BP1 is repositioned to the periphery of enlarged irradiation-induced foci (IRIF) via a BRCA1-dependent process. K63-linked ubiquitin chains, which also form at IRIF, are also repositioned as well as receptor-associated protein 80 (RAP80), a ubiquitin binding protein. RAP80 repositioning requires POH1, a proteasome component. Thus, the interfacing barriers to HR, 53BP1 and RAP80 are relieved by POH1 and BRCA1, respectively. Removal of RAP80 from the IRIF core is required for loss of the ubiquitin chains and 53BP1, and for efficient replication protein A foci formation. We propose that NHEJ is used preferentially to HR because it is a compact process that does not necessitate extensive chromatin changes in the DSB vicinity

    Emergence d’une spécialité scientifique dans l’espace - La réparation de l’ADN

    Get PDF
    International audienceIn the study of science, the specialty is seen as the ideal level of analysis to understand the genesis and development of scientific communities. This article uses bibliometric data to analyze the emergence of DNA repair by testing a hybrid method to identify the specialty’s appearance in geographical space by focusing on the geographical trajectories of the pioneers in this field. We try to identify the professional mobility of researchers using these bibliometric data, and if possible to highlight the structural networks of places during the emergence stage of the specialty. These networks determine places as much as they are built by individual trajectories. In this way, we try to make a place for the geography of science in the field of social studies of science.Dans l’étude des sciences, la spécialité est perçue comme le niveau d’analyse idéal pour comprendre la genèse et le développement des collectifs scientifiques. Cet article utilise des données bibliométriques pour analyser l’émergence de la Réparation de l’ADN en expérimentant une méthode mixte pour repérer son apparition dans l’espace géographique. En nous concentrant sur les trajectoires géographiques de pionniers dans cedomaine, nous tâchons de repérer leur mobilité professionnelle à l’aide de données bibliométriques dans la perspective de mettre en évidence les réseaux de lieux structurants dans la phase d’émergence de la spécialité. Ces réseaux de lieux déterminent autant qu’ils sont construits par les trajectoires individuelles. Nous essayons ainsi de faire une place à la géographie des sciences dans le domaine des études sociales des sciences

    Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions

    Get PDF
    Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells

    Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution

    Get PDF
    Ung-type uracil-DNA glycosylases are frontline defenders of DNA sequence fidelity in bacteria, plants, and animals; Ungs also directly assist both innate and humoral immunity. Critically important in viral pathogenesis, whether acting for or against viral DNA persistence, Ungs also have therapeutic relevance to cancer, microbial, and parasitic diseases. Ung catalytic specificity is uniquely conserved, yet selective antiviral drugging of the Ung catalytic pocket is tractable. However, more promising precision therapy approaches present themselves via insights from viral strategies, including sequestration or adaptation of Ung for non-canonical roles. A universal Ung inhibition mechanism, converged upon by unrelated viruses, could also inform design of compounds to inhibit specific distinct Ungs. Extrapolating current developments, the character of such novel chemical entities is proposed

    The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls

    Get PDF
    Galls induced by plant‐parasitic nematodes involve a hyperactivation of the plant mitotic and endocycle machinery for their profit. Dedifferentiation of host root cells includes drastic cellular and molecular readjustments. In such background, potential DNA damage in the genome of gall cells is eminent. We questioned if DNA damage checkpoints activation followed by DNA repair occurred, or was eventually circumvented, in nematode‐induced galls. Galls display transcriptional activation of the DNA damage checkpoint kinase WEE1, correlated with its protein localization in the nuclei. The promoter of the stress marker gene SMR7 was evaluated under the WEE1‐knockout background. Drugs inducing DNA damage and a marker for DNA repair, PARP1 were used to understand mechanisms that might cope with DNA damage in galls. Our functional study revealed that gall cells lacking WEE1 conceivably entered mitosis prematurely disturbing the cell cycle despite the loss of genome integrity. The disrupted nuclei phenotype in giant cells hinted to the accumulation of mitotic defects. As well, WEE1‐knockout in Arabidopsis and downregulation in tomato repressed infection and reproduction of root‐knot nematodes. Together with data on DNA damaging drugs, we suggest a conserved function for WEE1 controlling a G1/S cell cycle arrest in response to replication defect in galls

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p

    ruvA Mutants that resolve Holliday junctions but do not reverse replication forks

    Get PDF
    RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination

    The Base Excision Repair Pathway Is Required for Efficient Lentivirus Integration

    Get PDF
    An siRNA screen has identified several proteins throughout the base excision repair (BER) pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins

    Positive Regulation of DNA Double Strand Break Repair Activity during Differentiation of Long Life Span Cells: The Example of Adipogenesis

    Get PDF
    Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs), and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE) and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ) that relies on the DNA dependent protein kinase (DNA-PK) activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue
    corecore