2 research outputs found

    Rolling in the Higgs Model and Elliptic Functions

    Full text link
    Asymptotic methods in nonlinear dynamics are used to improve perturbation theory results in the oscillations regime. However, for some problems of nonlinear dynamics, particularly in the case of Higgs (Duffing) equation and the Friedmann cosmological equations, not only small oscillations regime is of interest but also the regime of rolling (climbing), more precisely the rolling from a top (climbing to a top). In the Friedman cosmology, where the slow rolling regime is often used, the rolling from a top (not necessary slow) is of interest too. In the present work a method for approximate solution to the Higgs equation in the rolling regime is presented. It is shown that in order to improve perturbation theory in the rolling regime turns out to be effective not to use an expansion in trigonometric functions as it is done in case of small oscillations but use expansions in hyperbolic functions instead. This regime is investigated using the representation of the solution in terms of elliptic functions. An accuracy of the corresponding approximation is estimated.Comment: Latex, 36 Pages, 8 figures, typos correcte

    Derivation of the particle dynamics from kinetic equations

    Full text link
    We consider the microscopic solutions of the Boltzmann-Enskog equation discovered by Bogolyubov. The fact that the time-irreversible kinetic equation has time-reversible microscopic solutions is rather surprising. We analyze this paradox and show that the reversibility or irreversibility property of the Boltzmann-Enskog equation depends on the considered class of solutions. If the considered solutions have the form of sums of delta-functions, then the equation is reversible. If the considered solutions belong to the class of continuously differentiable functions, then the equation is irreversible. Also, we construct the so called approximate microscopic solutions. These solutions are continuously differentiable and they are reversible on bounded time intervals. This analysis suggests a way to reconcile the time-irreversible kinetic equations with the time-reversible particle dynamics. Usually one tries to derive the kinetic equations from the particle dynamics. On the contrary, we postulate the Boltzmann-Enskog equation or another kinetic equation and treat their microscopic solutions as the particle dynamics. So, instead of the derivation of the kinetic equations from the microdynamics we suggest a kind of derivation of the microdynamics from the kinetic equations.Comment: 18 pages; some misprints have been corrected, some references have been adde
    corecore