678 research outputs found

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    Tunneling Splittings in Mn12-Acetate Single Crystals

    Full text link
    A Landau-Zener multi-crossing method has been used to investigate the tunnel splittings in high quality Mn12_{12}-acetate single crystals in the pure quantum relaxation regime and for fields applied parallel to the magnetic easy axis. With this method several individual tunneling resonances have been studied over a broad range of time scales. The relaxation is found to be non-exponential and a distribution of tunnel splittings is inferred from the data. The distributions suggest that the inhomogeneity in the tunneling rates is due to disorder that produces a non-zero mean value of the average transverse anisotropy, such as in a solvent disorder model. Further, the effect of intermolecular dipolar interaction on the magnetic relaxation has been studied.Comment: Europhysics Letters (in press). 7 pages, including 3 figure

    More Evidence for a Distribution of Tunnel Splittings in Mn12_{12}-acetate

    Full text link
    In magnetic fields applied parallel to the anisotropy axis, the magnetization of Mn12_{12} has been measured in response to a field that is swept back and forth across the resonances corresponding to steps N=4,5,...9N=4,5,...9. The fraction of molecules remaining in the metastable well after each sweep through the resonance is inconsistent with expectations for an ensemble of identical molecules. The data are consistent instead with the presence of a broad distribution of tunnel splittings. A very good fit is obtained for a Gaussian distribution of the second-order anisotropy tunneling parameter XE=ln(E/2D)X_E=-\ln(\mid E\mid/2D). We show that dipolar shuffling is a negligible effect which cannot explain our data.Comment: minor corrections (PACS nos, signs in Fig. 2

    Non-equilibrium Magnetization Dynamics in the Fe_8 Single-Molecule Magnet Induced by High-Intensity Microwave Radiation

    Full text link
    Resonant microwave radiation applied to a single crystal of the molecular magnet Fe_8 induces dramatic changes in the sample's magnetization. Transitions between excited states are found even though at the nominal system temperature these levels have negligible population. We find evidence that the sample heats significantly when the resonance condition is met. In addition, heating is observed after a short pulse of intense radiation has been turned off, indicating that the spin system is out of equilibrium with the lattice.Comment: Version to appear in Europhysics Letters. Minor changes and updated reference

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Abrupt Transition between Thermally-Activated Relaxation and Quantum Tunneling in a Molecular Magnet

    Full text link
    We report Hall sensor measurements of the magnetic relaxation of Mn12_{12} acetate as a function of magnetic field applied along the easy axis of magnetization. Data taken at a series of closely-spaced temperatures between 0.24 K and 1.4 K provide strong new evidence for an abrupt ``first-order'' transition between thermally-assisted relaxation and magnetic decay via quantum tunneling.Comment: 4 pages, including 7 figure
    corecore