71 research outputs found

    Quadrupole correlations and inertial properties of rotating nuclei

    Get PDF
    The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analyzed for QQ-nuclear interaction using the random phase approximation (RPA). The different recipes to treat the cranking mean field plus RPA problem are considered. The effects of the dN=2 quadrupole matrix elements and the role of the volume conservation condition are discussed.Comment: 14 pages, 7 figures, To be published in J. Phys. G: Nucl. Phy

    Single Boson Images Via an Extended Holstein Primakoff Mapping

    Get PDF
    The Holstein-Primakoff mapping for pairs of bosons is extended in order to accommodate single boson mapping. The proposed extension allows a variety of applications and especially puts the formalism at finite temperature on firm grounds. The new mapping is applied to the O(N+1) anharmonic oscillator with global symmetry broken down to O(N). It is explicitly demonstrated that N-Goldstone modes appear. This result generalizes the Holstein-Primakoff mapping for interacting boson as developed in ref.[1].Comment: 9 pages, LaTeX. Physical content unchanged. Unnecessary figure remove

    Gamow-Teller transitions and deformation in the proton-neutron random phase approximation

    Full text link
    We investigate reliability of Gamow-Teller transition strengths computed in the proton-neutron random phase approximation, comparing with exact results from diagonalization in full 0ω0\hbar\omega shell-model spaces. By allowing the Hartree-Fock state to be deformed, we obtain good results for a wide variety of nuclides, even though we do not project onto good angular momentum. We suggest that deformation is as important or more so than pairing for Gamow-Teller transitions.Comment: 8 pages, 5 figures; added references, clarified discussion with regards to stabilit

    Self-Consistent Velocity Dependent Effective Interactions

    Get PDF
    The theory of self-consistent effective interactions in nuclei is extended for a system with a velocity dependent mean potential. By means of the field coupling method, we present a general prescription to derive effective interactions which are consistent with the mean potential. For a deformed system with the conventional pairing field, the velocity dependent effective interactions are derived as the multipole pairing interactions in doubly-stretched coordinates. They are applied to the microscopic analysis of the giant dipole resonances (GDR's) of 148,154Sm{}^{148,154}Sm, the first excited 2+2^+ states of Sn isotopes and the first excited 33^- states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of GDR peaks, in restoring the energy weighted sum rule, and in reducing the values of B(Eλ)B(E\lambda).Comment: 35 pages, RevTeX, 7 figures (available upon request), to appear in Phys.Rev.

    Inertial parameters and superfluid-to-normal phase transition in superdeformed bands

    Get PDF
    The quasiclassically exact solution for the second inertial parameter B\cal B is found in self-consistent way. It is shown that superdeformation and nonuniform pairing arising from the rotation induced pair density significantly reduce this inertial parameter. The different limiting cases for B\cal B, which allow to study an interplay between rapid rotation, pairing correlations, and mean field deformation, are considered. The new signature for the transition from pairing to normal phase is suggested in terms of the variation of B/A{\cal B}/{\cal A} versus spin. Experimental data indicate the existence of such transition in the three superdeformed mass regions.Comment: 8 pages, LaTeX, 3 figure

    Backbending and GammaGamma-Vibrations

    Full text link
    We propose that the backbending phenomenon can be explained as a result of the disappearance of collective gammagamma-vibrational mode in the rotating frame. Using a cranking+random phase approximation approach for the modified Nilsson potential + monopole pairing forces, we show that this mechanism is responsible for the backbending in 156^{156}Dy, 158^{158}Er and obtain a good agreement between theoretical and experimental results.Comment: 5 pages, 4 figures, published versio

    Tilted Rotation and Wobbling Motion in Nuclei

    Get PDF
    The self-consistent harmonic oscillator model including the three-dimensional cranking term is extended to describe collective excitations in the random phase approximation. It is found that quadrupole collective excitations associated with wobbling motion in rotating nuclei lead to the appearance of two- or three-dimensional rotation.Comment: 9 pages, 2 Postscript figures, corrected typo

    Hermitian boson mapping and finite truncation

    Full text link
    Starting from a general, microscopic fermion-to-boson mapping that preserves Hermitian conjugation, we discuss truncations of the boson Fock space basis. We give conditions under which the exact boson images of finite fermion operators are also finite (e.g., a 1+2-body fermion Hamiltonian is mapped to a 1+2-body boson Hamiltonian) in the truncated basis. For the most general case, where the image is not necessarily exactly finite, we discuss how to make practical and controlled approximations.Comment: 12 pages in RevTex with no figures, Los Alamos preprint # LA-UR-94-146

    Many-body correlations in a multistep variational approach

    Get PDF
    We discuss a multistep variational approach for the study of many-body correlations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. Purpose of these diagonalizations is that of searching for the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    Scalar ground-state observables in the random phase approximation

    Get PDF
    We calculate the ground-state expectation value of scalar observables in the matrix formulation of the random phase approximation (RPA). Our expression, derived using the quasiboson approximation, is a straightforward generalization of the RPA correlation energy. We test the reliability of our expression by comparing against full diagonalization in 0 h-bar omega shell-model spaces. In general the RPA values are an improvement over mean-field (Hartree-Fock) results, but are not always consistent with shell-model results. We also consider exact symmetries broken in the mean-field state and whether or not they are restored in RPA.Comment: 7 pages, 3 figure
    corecore