23,530 research outputs found
A voice-actuated wind tunnel model leak checking system
A voice-actuated wind tunnel model leak checking system was developed. The system uses a voice recognition and response unit to interact with the technician along with a graphics terminal to provide the technician with visual feedback while checking a model for leaks
Civil Procedure as a Critical Discussion
This Article develops a model for analyzing legal dispute resolution systems as systems for argumentation. Our model meshes two theories of argument conceived centuries apart: contemporary argumentation theory and classical stasis theory. In this Article, we apply the model to the Federal Rules of Civil Procedure as a proof of concept. Specifically, the model analyzes how the Federal Rules of Civil Procedure function as a staged argumentative critical discussion designed to permit judge and jury to rationally resolve litigants’ differences in a reasonable manner. At a high level, this critical discussion has three phases: a confrontation, an (extended) opening, and a concluding phase. Those phases are the umbrella under which discrete argumentation phases occur at points we call stases. Whenever litigants seek a ruling or judgment, they reach a stasis—a stopping or standing point for arguing procedural points of disagreement. During these stases, the parties make arguments that fall into predictable “commonplace” argument types. Taken together, these stock argument types form a taxonomy of arguments for all civil cases. Our claim that the Federal Rules of Civil Procedure function as a system for argumentation is novel, as is our claim that civil cases breed a taxonomy of argument types. These claims also mark the beginning of a broader project. Starting here with the Federal Rules of Civil Procedure, we embark on a journey that we expect to follow for several years (and which we hope other scholars will join), exploring our model’s application across dispute resolution systems and using it to make normative claims about those systems. From a birds-eye view, this Article also represents a short modern trek in a much longer journey begun by advocates in city states in and near Greece nearly 2500 years ago
Scaling relations of supersonic turbulence in star-forming molecular clouds
We present a direct numerical and analytical study of driven supersonic MHD
turbulence that is believed to govern the dynamics of star-forming molecular
clouds. We describe statistical properties of the turbulence by measuring the
velocity difference structure functions up to the fifth order. In particular,
the velocity power spectrum in the inertial range is found to be close to E(k)
\~ k^{-1.74}, and the velocity difference scales as ~ L^{0.42}. The
results agree well with the Kolmogorov--Burgers analytical model suggested for
supersonic turbulence in [astro-ph/0108300]. We then generalize the model to
more realistic, fractal structure of molecular clouds, and show that depending
on the fractal dimension of a given molecular cloud, the theoretical value for
the velocity spectrum spans the interval [-1.74 ... -1.89], while the
corresponding window for the velocity difference scaling exponent is [0.42 ...
0.78].Comment: 17 pages, 6 figures include
Multi-orbital bosons in bipartite optical lattices
We study interacting bosons in a two dimensional bipartite optical lattice.
By focusing on the regime where the first three excited bands are nearly
degenerate we derive a three orbital tight-binding model which captures the
most relevant features of the bandstructure. In addition, we also derive a
corresponding generalized Bose-Hubbard model and solve it numerically under
different situations, both with and without a confining trap. It is especially
found that the hybridization between sublattices can strongly influence the
phase diagrams and in a trap enable even appearances of condensed phases
intersecting the same Mott insulating plateaus.Comment: Minor change
MARGINAL AGRICULTURAL LAND CLASSIFICATION: A NEW APPROACH
Land Economics/Use,
The Restructuring of the Saskatchewan Wheat Pool: Overconfidence and Agency
This paper examines how agency problems combined with overconfidence and hubris by coop management lead to financial failure in the Saskatchewan Wheat Pool. As a consequence of both of these problems, the Pool made poor investment decisions and ended up in severe financial difficulties. These problems were exacerbated by three additional factors: (1) ownership and control were separated via an A-B share structure, leading to a situation where neither farmer members nor investors had an incentive to monitor management activities; (2) the sheer volume of investment activity undertaken made it virtually impossible for the board to stay on top of what was happening; and (3) as a result of the change financial structure, senior management had available a large amount of debt capital that it could spend.Agribusiness, Crop Production/Industries,
Flows, Fragmentation, and Star Formation. I. Low-mass Stars in Taurus
The remarkably filamentary spatial distribution of young stars in the Taurus
molecular cloud has significant implications for understanding low-mass star
formation in relatively quiescent conditions. The large scale and regular
spacing of the filaments suggests that small-scale turbulence is of limited
importance, which could be consistent with driving on large scales by flows
which produced the cloud. The small spatial dispersion of stars from gaseous
filaments indicates that the low-mass stars are generally born with small
velocity dispersions relative to their natal gas, of order the sound speed or
less. The spatial distribution of the stars exhibits a mean separation of about
0.25 pc, comparable to the estimated Jeans length in the densest gaseous
filaments, and is consistent with roughly uniform density along the filaments.
The efficiency of star formation in filaments is much higher than elsewhere,
with an associated higher frequency of protostars and accreting T Tauri stars.
The protostellar cores generally are aligned with the filaments, suggesting
that they are produced by gravitational fragmentation, resulting in initially
quasi-prolate cores. Given the absence of massive stars which could strongly
dominate cloud dynamics, Taurus provides important tests of theories of
dispersed low-mass star formation and numerical simulations of molecular cloud
structure and evolution.Comment: 32 pages, 9 figures: to appear in Ap
Recommended from our members
Mutual neutralization in collisions of H+ with Cl.
The cross section and final state distribution for mutual neutralization in collisions of H+ with Cl- have been calculated using an ab initio quantum mechanical approach. It is based on potential energy curves and nonadiabatic coupling elements for the six lowest 1Σ+ states of HCl computed with the multireference configuration interaction method. The reaction is found to be driven by nonadiabatic interactions occurring at relatively small internuclear distances (R < 6 a0). Effects on the mutual neutralization cross section with respect to the asymptotic form of the potential energy curves, inclusion of closed channels, as well as isotopic substitution are investigated. The effect of spin-orbit interaction is investigated using a semiempirical model and found to be small. A simple two-state Landau-Zener calculation fails to predict the cross section
- …