88 research outputs found

    Runtime virtual machine recontextualization for clouds

    Get PDF
    We introduce and define the concept of recontextualization for cloud applications by extending contextualization, i.e. the dynamic configuration of virtual machines (VM) upon initialization, with autonomous updates during runtime. Recontextualization allows VM images and instances to be dynamically re-configured without restarts or downtime, and the concept is applicable to all aspects of configuring a VM from virtual hardware to multi-tier software stacks. Moreover, we propose a runtime cloud recontextualization mechanism based on virtual device management that enables recontextualization without the need to customize the guest VM. We illustrate our concept and validate our mechanism via a use case demonstration: the reconfiguration of a cross-cloud migratable monitoring service in a dynamic cloud environment. We discuss the details of the interoperable recontextualization mechanism, its architecture and demonstrate a proof of concept implementation. A performance evaluation illustrates the feasibility of the approach and shows that the recontextualization mechanism performs adequately with an overhead of 18% of the total migration time

    Design for Future Internet Service Infrastructures

    Get PDF
    This paper presents current research in the design and integration of advance systems, service and management technologies into a new generation of Service Infrastructure for Future Internet of Services, which includes Service Clouds Computing. These developments are part of the FP7 RESERVOIR project and represent a creative mixture of service and network virtualisation, service computing, network and service management techniques

    Dynamic management of virtual infrastructures

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10723-014-9296-5Cloud infrastructures are becoming an appropriate solution to address the computational needs of scientific applications. However, the use of public or on-premises Infrastructure as a Service (IaaS) clouds requires users to have non-trivial system administration skills. Resource provisioning systems provide facilities to choose the most suitable Virtual Machine Images (VMI) and basic configuration of multiple instances and subnetworks. Other tasks such as the configuration of cluster services, computational frameworks or specific applications are not trivial on the cloud, and normally users have to manually select the VMI that best fits, including undesired additional services and software packages. This paper presents a set of components that ease the access and the usability of IaaS clouds by automating the VMI selection, deployment, configuration, software installation, monitoring and update of Virtual Appliances. It supports APIs from a large number of virtual platforms, making user applications cloud-agnostic. In addition it integrates a contextualization system to enable the installation and configuration of all the user required applications providing the user with a fully functional infrastructure. Therefore, golden VMIs and configuration recipes can be easily reused across different deployments. Moreover, the contextualization agent included in the framework supports horizontal (increase/decrease the number of resources) and vertical (increase/decrease resources within a running Virtual Machine) by properly reconfiguring the software installed, considering the configuration of the multiple resources running. This paves the way for automatic virtual infrastructure deployment, customization and elastic modification at runtime for IaaS clouds.The authors would like to thank to thank the financial support received from the Ministerio de Economia y Competitividad for the project CodeCloud (TIN2010-17804).Caballer Fernández, M.; Blanquer Espert, I.; Moltó, G.; Alfonso Laguna, CD. (2015). Dynamic management of virtual infrastructures. Journal of Grid Computing. 13(1):53-70. https://doi.org/10.1007/s10723-014-9296-5S5370131de Alfonso, C., Caballer, M., Alvarruiz, F., Molto, G., Hernández, V.: Infrastructure deployment over the cloud. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 517–521. IEEE. (2011). doi: 10.1109/CloudCom.2011.77Alvarruiz, F., De Alfonso, C., Caballer, M., Hernández, V.: An energy manager for high performance computer clusters. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 231–238. (2012). doi: 10.1109/ISPA.2012.38Amazon Web Services: AWS CloudFormation. (2013). http://aws.amazon.com/es/cloudformation/Apache: Whirr (2013). http://whirr.apache.org/Blanquer, I., Brasche, G., Lezzi, D.: Requirements of scientific applications in cloud offerings. In: Proceedings of the 2012 6th Iberian Grid Infrastructure Conference, IBERGRID ’12, pp. 173–182 (2012)Bresnahan, J., Freeman, T., LaBissoniere, D., Keahey, K.: Managing appliance launches in infrastructure clouds. In: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, TG ’11, pp. 12:1–12:7. ACM, New York (2011). doi: 10.1145/2016741.2016755Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of cloud computing environments for scaling of application services. Algoritm. Archit. Parallel Process. 6081, 20 (2010)Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009). doi: 10.1016/j.future.2008.12.001Caballer, M., De Alfonso, C., Alvarruiz, F., Moltó, G.: EC3: elastic cloud computing cluster. J. Comput. Syst. Sci. (2013). doi: 10.1016/j.jcss.2013.06.005Caballer, M., García, A., Moltó, G., de Alfonso, C.: Towards SLA-driven management of cloud infrastructures to elastically execute scientific applications. In: 6th Iberian Grid Infrastructure Conference (IberGrid), pp. 207–218 (2012)Carrión, J.V., Moltó, G., De Alfonso, C., Caballer, M., Hernández, V.: A generic catalog and repository service for virtual machine images. In: 2nd International ICST Conference on Cloud Computing CloudComp 2010 (2010)Cuomo, A., Modica, G., Distefano, S., Puliafito, A., Rak, M., Tomarchio, O., Venticinque, S., Villano, U.: An SLA-based broker for cloud infrastructures. J. Grid Comput 11(1), 1–25 (2012). doi: 10.1007/s10723-012-9241-4DeHaan, M.: Ansible. http://ansible.cc/ (2013)Distributed Management Task Force, Inc: Open Virtualization Format (OVF) (2010). http://dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdfDistributed Management Task Force, Inc: Cloud Infrastructure Management Interface (CIMI) Model and REST Interface over HTTP Specification (2012). http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdfEGI.eu: Seeking new horizons: EGI’s role for 2020. Tech. rep. (2012). https://documents.egi.eu/public/RetrieveFile?docid=1098&version=4&filename=EGI-1098-D230-final.pdfElmroth, E., Tordsson, J., Hernández, F.: Self-management challenges for multi-cloud architectures. Towards a service-based internet. Lect. Notes Comput. Sci. 6994, 38–49 (2011)HashiCorp: Vagrant (2013). http://www.vagrantup.com/Jacob, A.: Infrastructure in the cloud era. In: Proceedings of the 2009 International OReilly Conference Velocity (2009)Juve, G., Deelman, E.: Automating application deployment in infrastructure clouds. In: Proceedings of the 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, CLOUDCOM ’11, pp. 658–665. IEEE Computer Society, Washington DC (2011). doi: 10.1109/CloudCom.2011.102Keahey, K., Freeman, T.: Contextualization: providing one-click virtual clusters. In: 4th IEEE International Conference on eScience, pp. 301–308 (2008)Keahey, K., Freeman, T.: Architecting a large-scale elastic environment: recontextualization and adaptive cloud services for scientific computing (2012)Kecskemeti, G., Kertesz, A., Marosi, A., Kacsuk, P.: Interoperable resource management for establishing federated clouds. In: Achieving Federated and SelfManageable Cloud Infrastructures Theory and Practice, pp. 18–35 (2012). doi: 10.4018/978-1-4666-1631-8.ch002Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S., Rodríguez, M., Mercè, O., Marosi, A.C., Marco, J., Franch, X.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013). doi: 10.1007/s10723-013-9269-0Loutas, N., Kamateri, E., Bosi, F., Tarabanis, K.: Cloud computing interoperability: the state of play. 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 752–757 (2011). doi: 10.1109/CloudCom.2011.116Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically extend site resources. In: Proceedings of the 2010 IEEE/ACM 10th International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pp. 43–52. IEEE Computer Society, Washington DC (2010). doi: 10.1109/CCGRID.2010.80Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(5-6), 817–840 (2004)Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Publication 800-145 (Final). Tech. rep. (2011). http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdfMoltó, G., Caballer, M., Romero, E., Alfonso, C.D.: Elastic memory management of virtualized infrastructures for applications with dynamic memory requirements. In: Proceedings of the International Conference on Computational Science ICCS 2013, pp. 159–168. Elsevier (2013). doi: 10.1016/j.procs.2013.05.179Morfeo: Claudia (2013). http://claudia.morfeo-project.org/wiki/index.php/Main_PageOASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0 (2013). http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.htmlOCCI working group within the Open Grid Forum: Open Cloud Computing Interface Infrastructure (2011). http://ogf.org/documents/GFD.184.pdfOpscode: Chef (2013). http://www.opscode.com/chef/Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing STRATOS: a cloud broker service. In: 2012 IEEE 5th International Conference on Cloud Computing, pp. 891–898 (2012). doi: 10.1109/CLOUD.2012.24Puppet Labs: IT Automation Software for System Administrators (2013). http://www.puppetlabs.com/Redl, C., Breskovic, I., Brandic, I., Dustdar, S.: Automatic SLA matching and provider selection in grid and cloud computing markets. In: Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, GRID ’12, pp. 85–94. IEEE Computer Society, Washington (2012). doi: 10.1109/Grid.2012.18Rodero-Merino, L., Vaquero, L.M., Gil, V., Galán, F., Fontán, J., Montero, R.S., Llorente, I.M.: From infrastructure delivery to service management in clouds. Futur. Gener. Comput. Syst. 26(8), 1226–1240 (2010). doi: 10.1016/j.future.2010.02.013StratusLab: Claudia Platform (2013). http://stratuslab.eu/doku.php/claudiaSundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud service selection. In: Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing, CLOUD ’12, pp. 558–565 (2012). doi: 10.1109/CLOUD.2012.119Telefónica Investigación y Desarrollo S.A. Unipersonal.: Telefónicas TCloud API Specification. (2010). http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdfYangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: CompatibleOne: The open source cloud broker. J. Grid Comput. (2013). doi: 10.1007/s10723-013-9285-

    Fast linear algebra is stable

    Full text link
    In an earlier paper, we showed that a large class of fast recursive matrix multiplication algorithms is stable in a normwise sense, and that in fact if multiplication of nn-by-nn matrices can be done by any algorithm in O(nω+η)O(n^{\omega + \eta}) operations for any η>0\eta > 0, then it can be done stably in O(nω+η)O(n^{\omega + \eta}) operations for any η>0\eta > 0. Here we extend this result to show that essentially all standard linear algebra operations, including LU decomposition, QR decomposition, linear equation solving, matrix inversion, solving least squares problems, (generalized) eigenvalue problems and the singular value decomposition can also be done stably (in a normwise sense) in O(nω+η)O(n^{\omega + \eta}) operations.Comment: 26 pages; final version; to appear in Numerische Mathemati

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics

    ACTiCLOUD: Enabling the Next Generation of Cloud Applications

    Get PDF
    Despite their proliferation as a dominant computing paradigm, cloud computing systems lack effective mechanisms to manage their vast amounts of resources efficiently. Resources are stranded and fragmented, ultimately limiting cloud systems' applicability to large classes of critical applications that pose non-moderate resource demands. Eliminating current technological barriers of actual fluidity and scalability of cloud resources is essential to strengthen cloud computing's role as a critical cornerstone for the digital economy. ACTiCLOUD proposes a novel cloud architecture that breaks the existing scale-up and share-nothing barriers and enables the holistic management of physical resources both at the local cloud site and at distributed levels. Specifically, it makes advancements in the cloud resource management stacks by extending state-of-the-art hypervisor technology beyond the physical server boundary and localized cloud management system to provide a holistic resource management within a rack, within a site, and across distributed cloud sites. On top of this, ACTiCLOUD will adapt and optimize system libraries and runtimes (e.g., JVM) as well as ACTiCLOUD-native applications, which are extremely demanding, and critical classes of applications that currently face severe difficulties in matching their resource requirements to state-of-the-art cloud offerings

    Metastable Dynamics above the Glass Transition

    Full text link
    The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduction of the defect density variable nn into the set of slow variables with the mass density ρ\rho and the momentum density g{\bf g}. As a first approximation, we consider the case where motions associated with nn are much slower than those associated with ρ\rho. Self-consistently, assuming one is near a critical surface in the MCT sense, we find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow metastable well and a weak coupling between ρ\rho and nn. The metastability parameters as well as the exponents describing the observed sequence of time relaxations are given as smooth functions of the temperature without any evidence for a special temperature. We then investigate the case where the defect dynamics is included. We find that the slowing down of the dynamics corresponds to the system arranging itself such that the kinetic coefficient γv\gamma_v governing the diffusion of the defects approaches from above a small temperature-dependent value γvc\gamma^c_v.Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar- compressed file. The rest is available upon request.), RevTEX3.0+eps
    corecore