406 research outputs found

    A novel technique for wide-field polarimetry with a radiotelescope array

    Get PDF
    We report the use of the Australia Telescope Compact Array (ATCA) to conduct polarimetric observations of the sky at 5 GHz. The ATCA is normally operated as an interferometer array, but these observations were conducted in a split array mode in which the antenna elements were used as single-dishes with their beams staggered to simultaneously cover a wide area of sky with a resolution of 10 arcmin. The linearly polarized sky radiation was fully characterized from measurements, made over a range of parallactic angles, of the cross correlated signals from the orthogonal linear feeds. We describe the technique and present a polarimetric image of the Vela supernova remnant made as a test of the method. The development of the techniques was motivated by the need for wide-field imaging of the foreground contamination of the polarized component of the cosmic microwave background signal.Comment: 13 pages, 2 figures, accepted for publication in A

    B-Mode contamination by synchrotron emission from 3-years WMAP data

    Full text link
    We study the contamination of the B-mode of the Cosmic Microwave Background Polarization (CMBP) by Galactic synchrotron in the lowest emission regions of the sky. The 22.8-GHz polarization map of the 3-years WMAP data release is used to identify and analyse such regions. Two areas are selected with signal-to-noise ratio S/N<2 and S/N<3, covering ~16% and ~26% fraction of the sky, respectively. The polarization power spectra of these two areas are dominated by the sky signal on large angular scales (multipoles l < 15), while the noise prevails on degree scales. Angular extrapolations show that the synchrotron emission competes with the CMBP B-mode signal for tensor-to-scalar perturbation power ratio T/S=103T/S = 10^{-3} -- 10210^{-2} at 70-GHz in the 16% lowest emission sky (S/N<2 area). These values worsen by a factor ~5 in the S/N<3 region. The novelty is that our estimates regard the whole lowest emission regions and outline a contamination better than that of the whole high Galactic latitude sky found by the WMAP team (T/S>0.3). Such regions allow T/S103T/S \sim 10^{-3} to be measured directly which approximately corresponds to the limit imposed by using a sky coverage of 15%. This opens interesting perspectives to investigate the inflationary model space in lowest emission regions.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Large Radio Telescopes for Anomalous Microwave Emission Observations

    Full text link
    We discuss in this paper the problem of the Anomalous Microwave Emission (AME) in the light of ongoing or future observations to be performed with the largest fully steerable radio telescope in the world. High angular resolution observations of the AME will enable astronomers to drastically improve the knowledge of the AME mechanisms as well as the interplay between the different constituents of the interstellar medium in our galaxy. Extragalactic observations of the AME have started as well, and high resolution is even more important in this kind of observations. When cross-correlating with IR-dust emission, high angular resolution is also of fundamental importance in order to obtain unbiased results. The choice of the observational frequency is also of key importance in continuum observation. We calculate a merit function that accounts for the signal-to-noise ratio (SNR) in AME observation given the current state-of-the-art knowledge and technology. We also include in our merit functions the frequency dependence in the case of multifrequency observations. We briefly mention and compare the performance of four of the largest radiotelescopes in the world and hope the observational programs in each of them will be as intense as possible.Comment: Review accepted for publication in Advances in Astronom

    The synchrotron foreground and CMB temperature-polarization cross correlation power spectrum from the first year WMAP data

    Full text link
    We analyse the temperature-polarization cross-correlation in the Galactic synchrotron template that we have recently developed, and between the template and CMB temperature maps derived from WMAP data. Since the polarized synchrotron template itself uses WMAP data, we can estimate residual synchrotron contamination in the CMB CTEC_\ell^{TE} angular spectrum. While C2TEC_2^{TE} appears to be contamined by synchrotron, no evidence for contamination is found in the multipole range which is most relevant for the fit of the cosmological optical depth.Comment: Accepted for pubblication on MNRAS Lette

    1.4 GHz polarimetric observations of the two fields imaged by the DASI experiment

    Get PDF
    We present results of polarization observations at 1.4 GHz of the two fields imaged by the DASI experiment (α=23h30m\alpha = 23^{\rm h} 30^{\rm m}, δ=55\delta = -55^{\circ} and α=00h30m\alpha = 00^{\rm h} 30^{\rm m}, δ=55\delta = -55^{\circ}, respectively). Data were taken with the Australia Telescope Compact Array with 3.4 arcmin resolution and 0.18\sim 0.18 mJy beam1^{-1} sensitivity. The emission is dominated by point sources and we do not find evidence for diffuse synchrotron radiation even after source subtraction. This allows to estimate an upper limit of the diffuse polarized emission. The extrapolation to 30 GHz suggests that the synchrotron radiation is lower than the polarized signal measured by the DASI experiment by at least 2 orders of magnitude. This further supports the conclusions drawn by the DASI team itself about the negligible Galactic foreground contamination in their data set, improving by a factor 5\sim 5 the upper limit estimated by Leitch et al. (2005). The dominant point source emission allows us to estimate the contamination of the CMB by extragalactic foregrounds. We computed the power spectrum of their contribution and its extrapolation to 30 GHz provides a framework where the CMB signal should dominate. However, our results do not match the conclusions of the DASI team about the negligibility of point source contamination, suggesting to take into account a source subtraction from the DASI data.Comment: 7 pages, six figures, submitted to MNRA

    Effects of Thermal Fluctuations in the SPOrt Experiment

    Full text link
    The role of systematic errors induced by thermal fluctuations is analyzed for the SPOrt experiment with the aim at estimating their impact on the measurement of the Cosmic Microwave Background Polarization (CMBP). The transfer functions of the antenna devices from temperature to data fluctuations are computed, by writing them in terms of both instrument and thermal environment parameters. In addition, the corresponding contamination maps are estimated, along with their polarized power spectra, for different behaviours of the instabilities. The result is that thermal effects are at a negligible level even for fluctuations correlated with the Sun illumination provided their frequency ftff_{tf} is larger than that of the Sun illumination (fdayf_{day}) by a factor ftf/fday>30f_{tf} / f_{day} > 30, which defines a requirement for the statistical properties of the temperature behaviour as well. The analysis with actual SPOrt operative parameters shows that the instrument is only weakly sensitive to temperature instabilities, the main contribution coming from the cryogenic stage. The contamination on the E-mode spectrum does not significantly pollute the CMBP signal and no specific data cleaning seems to be needed.Comment: 12 pages, 11 figures. Accepted for publication in A&
    corecore